
Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

1

Lecture 3

Expressing Parallelism
Pragmatically

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

2

This Lecture
The Goals:
1) Understand the difference between data and task parallelism
and the potential of their combination
2) Become more aware about hardware and OS features related to
multithreading
3) Appreciate the usefulness of abstraction from details achieved
through a 3rd party library

The outline:

§ Parallel software design: an introduction

§ Threads and parallelism in C++

§ Elements of Threading Building Blocks

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

3

Asynchronous Execution

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

4

Asynchronous Task Execution

§ Problem: a long calculation, the result of which is not
immediately needed

§ Possible solution: asynchronous execution of the
calculation, retrieval of the result at a later stage

§ Nuances: result may or may not be needed later depending
on the control flow steering the application
§ Lazy evaluation?

Main “line of work”

Long calculation

Time

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

5

std::async

§ A solution is provided by the standard library natively: std::async
§ #include <future>

§ Execute a function concurrently in a separate thread or on demand
when the result is needed (lazily)

§ Result is a std::future: a “bridge” between the two locations:
§ std::future “Transports” results and exceptions from thread

to thread

§ In orther words, code to be executed is passed around

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

6

std::async in Action

#include <future>
#include <iostream>

int lenghtyCalculation(){ […] };
void doOtherStuff(){ […] };

int main(){
std::future<int> myAnswer = std::async(lenghtyCalculation);
doOtherStuff();
std::cout << “The result is: ” << myAnswer.get() << std::endl;
}

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

7

std::async in Action

#include <future>
#include <iostream>

int lenghtyCalculation(){ […] };
void doOtherStuff(){ […] };

int main(){
std::future<int> myAnswer = std::async(lenghtyCalculation);
doOtherStuff();
std::cout << “The result is: ” << myAnswer.get() << std::endl;
}

Header for async
and future

“Launch” the
calculation

Retreive result

§ std::async can have a second parameter, the “policy”:

§ std::launch::async: execute function in a new separate thread
§ std::launch::deferred: defer call until get() is called (lazy)
§ Default: “async or deferred”, the implementation chooses!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

8

std::async in Action

Main “line of work”

Long calculation

Time

std::future<int> myAnswer = std::async(lenghtyCalculation);

myAnswer.get()

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

9

std::async in Action

Main “line of work”

Long calculation

Time

std::future<int> myAnswer = std::async(lenghtyCalculation);

myAnswer.get()

It’s easy after all, isn’t it?

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

10

Well, to be Honest… No.
§ Unfortunately scientifically relevant / potentially lucrative real life use

cases are complex
§ Cannot be solved simply throwing threads at them

§ In addition, many existing high-quality non parallel large software
systems are in production
§ Starting fresh may not be always possible

§ Example: software stack of an LHC experiment
§ Tens of (large) packages integrated
§ O(102) shared libraries
§ Experiment specific code
§ à Millions of nicely working lines of code

Need to think parallel
• Evolve the existing systems
• Be disruptive and think to the future

Unity of opposites J

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

11

Amdahl’s Law

Δt = Δt0 ⋅ 1−P()+ P
N

$

%&
'

()

Speedup = Δt0
Δt

=
1

(1−P)+ P
N

N: number of workers
P: parallel portion
Δt0: serial exec. time

“… the effort expended on achieving high parallel
processing rates is wasted unless it is accompanied by
achievements in sequential processing rates of very
nearly the same magnitude.” - 1967

It tells us something about parallel execution:
It states the maximum speedup achievable
given a certain problem of FIXED size and
sequential portion of the program.

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

12

Parallel Software Design:
an Introduction

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

13

First Step: Finding Concurrency
What can be executed concurrently?

Two techniques to figure this out:

§ Data decomposition
§ The partition of the data domain
§ Achieve data parallelism

§ Task decomposition
§ Split according to logical tasks
§ Achieve task parallelism

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

14

First Step: Finding Concurrency
What can be executed concurrently?

Two techniques to figure this out:

§ Data decomposition
§ The partition of the data domain
§ Achieve data parallelism

§ Task decomposition
§ Split according to logical tasks
§ Achieve task parallelism

This step takes place in front of a whiteboard

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

15

First Step: Finding Concurrency
What can be executed concurrently?

Two techniques to figure this out:

§ Data decomposition
§ The partition of the data domain
§ Achieve data parallelism

§ Task decomposition
§ Split according to logical tasks
§ Achieve task parallelism

This step takes place in front of a whiteboard

DIVIDE ET
IMPERA

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

16

Data Parallelism

Definition: parallelism achieved through the application of the same
transformation to multiple pieces of data

An illustration: multiplication of an array of values

Data parallelism
implies wise design of
the data structures to
be used!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

17

Data Parallelism: Examples

Increase floating point throughput acting on mathematical functions:

§ Math functions account for a significant portion of many scientific
applications

§ Decompose the functions in simple vectorisable FP operations, at the heart
of which there can be some sort of polynomial evaluation

§ Calculate math functions on independent inputs in parallel
§ For example using vectorisation techniques

§ “Seen in real life”: Intel MKL, AMD Libm, VDT, Yeppp libraries.

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

18

Task Parallelism

Definition: parallelism achieved through the partition of load into “baskets of
work” consumed by a pool of resources.

An illustration: calculate mean, binary OR, minimum and average of a set of
numbers

A bit too simple: no
dependency
between tasks!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

19

Task Parallelism: An example

HEP data processing frameworks

§ Run in a certain order algorithms on collision
events
§ In a nutshell: transform data from detector

readout electronics into particle kinematics
in steps

§ For decades, one algorithm executed at the
time, one event processed at the time

§ Evolving to accommodate parallelism, also
outside the single algorithms

§ One of the key ideas: schedule algorithms in
parallel according to their data
dependencies, also keeping N events in
memory

Sequential Execution

A possible parallel
execution graph

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

20

Pure Task/Data parallelism

§ We do not need to “choose” to approach a problem with a task or data
parallelism based solution

§ Actually, pure task/data parallelism is rare!

§ Combining the two is the key

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

21

Threads
and C++

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

22

Let’s change gears: Threads

§ From the operating system point of view:
§ Process: isolated instance of a program, with its own space in (virtual)

memory, can have multiple threads
§ Thread: light-weight process within process, sharing the memory with the

other threads living in the same process

§ The kernel manages the existing threads, scheduling them to the
available resources (CPUs)*
§ There can be more threads in a single process than cores in the machine!

* Actually mapping user threads to kernel threads, but this simplification ok in first order!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

23

Interlude: A Program in Memory
§ Text Segment: code to be

executed.

§ Initialized Data Segment:
global variables initialized by
the programmer.

§ Uninitialized Data Segment:
This segment contains
uninitialized global variables.

§ The stack: The stack is a
collection of stack frames. It
grows whenever a new
function is called. “Thread
private”.

§ The heap: Dynamic memory
(e.g. requested with “new”).

HEP: depth
of ~50 not
seldom
reached

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

24

Interlude: A Program in Memory
§ Text Segment: code to be

executed.

§ Initialized Data Segment:
global variables initialized by
the programmer.

§ Uninitialized Data Segment:
This segment contains
uninitialized global variables.

§ The stack: The stack is a
collection of stack frames. It
grows whenever a new
function is called. “Thread
private”.

§ The heap: Dynamic memory
(e.g. requested with “new”).

HEP: depth
of ~50 not
seldom
reached

Terminology:
Threads have their own stack, but they share a common heap

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

25

Processes and Threads: Pricetags
Process:

Isolated (different address spaces)

Easy to manage

Communication between them possible but pricey

Price to switch among them

Threads:

Sharing memory (communication is a memory access)

Lower overhead for creation, lower coding effort

Fit well many-cores architectures

Ideal for a task-based programming model

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

26

Threads or Processes?

Some additional elements to consider for the decision:

§ Amount of legacy code and resources available to make it thread-safe

§ Duration of tasks wrt the overhead of the forking process

§ Presence of shared states and their behaviour in presence of contention
§ E.g. Disk I/O, DB I/O, common data structures (e.g. “HEP event”)

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

27

Threads in C++

§ C++ offers a construct to represent a thread: std::thread

§ Interfaced to the underlying backend provided by the OS – 100% portable:
§ Linux: pthreads
§ Windows: Windows threads
§ …

§ A function (a callable in general) can be executed within a thread
asynchronously

§ Many more possibilities than the simple std::async execution
§ Full control on the thread!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

28

Threads example

#include <thread>
#include <iostream>

int main(){
std::thread t([]{std::cout << “Hello Concurrent World!\n”; });
t.join();

}

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

29

#include <thread>
#include <iostream>

int main(){
std::thread t([]{std::cout << “Hello Concurrent World!\n”; });
t.join();

}

Threads example
Header for
std::thread

Lambda function
Create and start a thread

Wait for the thread to finish its job

§ In general, it is possible that the thread does not need to be joined
§ A “daemon thread”: the method to use is std::thread::detach()
§ Once detached, the thread cannot be joined anymore!

§ Possible usecases: I/O, monitor filesystems, clean caches…

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

30

A Pitfall with Threads

#include <thread>
#include …

void g(){
std::string s(“Hello\n“);
std::thread t([&s]{std::cout << s;});

t.detach(); // lets the thread run w/o the need for joining
}

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

31

A Pitfall with Threads

#include <thread>
#include …

void g(){
std::string s(“Hello\n“);
std::thread t([&s]{std::cout << s;});

t.detach(); // lets the thread run w/o the need for joining
}

Parallel programs: variables’ lifetime even more important than in serial
world

Typical behaviour of the example above:

§ Function g terminates before the lambda: s is a dangling reference!

§ Corruption and segfaults are guaranteed

String s lives in the
scope of function g

Captured by reference!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

32

#include <thread>
#include …

void g(){
std::string s(“Hello\n“);
std::thread t([s]{std::cout << s;});

t.detach();
}

A Pitfall with Threads

§ A possible solution: create a string object and pass it by value

§ But it’s a copy of a string! Yes.

§ The phase-space of design and implementation choices significantly
expands when introducing concurrency!

Always carefully
consider ownership!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

33

How To Manage Threads?

§ Direct utilisation of threads: works (well) for simple cases

§ Difficult to scale:

§ Risk of a proliferation of threads

§ Need a more abstract model

§ Task oriented programming

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

34

#include <thread>
#include <vector>

#include <iostream>

void printThreadID(int i){
printf("thread num %d – id %2x\v”, i,std::this_thread::get_id);
}

int main(){
std::vector<std::thread> myThreads; myThreads.reserve(10);
for (int i=0; i<10; i++)

myThreads.emplace_back(printThreadID, i);

for (auto& t : myThreads)
t.join();

}

A possible prototype backend
behind task oriented programming!
A possible prototype backend
behind task oriented programming!

A First Abstraction

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

35

#include <thread>
#include <vector>

#include <iostream>

void printThreadID(int i){
printf("thread num %d – id %2x\v”, i,std::this_thread::get_id);
}

int main(){
std::vector<std::thread> myThreads; myThreads.reserve(10);
for (int i=0; i<10; i++)

myThreads.emplace_back(printThreadID, i);

for (auto& t : myThreads)
t.join();

}

A possible prototype backend
behind task oriented programming!
A possible prototype backend
behind task oriented programming!

A First Abstraction

Identify the thread

The first step towards
automating the management
of threads in the application!

Limitation: cannot
retrieve the return value.

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

36

#include <thread>
#include <vector>

#include <iostream>

void printThreadID(int i){
printf("thread num %d – id %2x\v”, i,std::this_thread::get_id);
}

int main(){
std::vector<std::thread> myThreads; myThreads.reserve(10);
for (int i=0; i<10; i++)

myThreads.emplace_back(printThreadID, i);

for (auto& t : myThreads)
t.join();

}

A possible prototype backend
behind task oriented programming!
A possible prototype backend
behind task oriented programming!

A First Abstraction

Identify the thread

The first step towards
automating the management
of threads in the application!

Limitation: cannot
retrieve the return value.

-> g++ –std=c++17 –lpthread -o myTest myTest.cpp
-> ./myTest
thread num 0 - id 139708894000896
thread num 5 - id 139708852037376
thread num 3 - id 139708868822784
thread num 2 - id 139708877215488
thread num 4 - id 139708860430080
thread num 8 - id 139708826859264
thread num 1 - id 139708885608192
thread num 7 - id 139708835251968
thread num 6 - id 139708843644672
thread num 9 - id 139708818466560

When dealing with
concurrency,
asynchronous
events are daily
business!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

37

Getting Back the Return Value

§ std::packaged_task: wraps a callable (function, lambda, bind), gives
handle to the result via a future

// includes of: <thread> <functional> <future> <algorithm> <utility>

bool isReachable(long ip){[…];return pingResult;};
[…]
std::vector<std::thread> threads;
std::vector<std::future<bool>> availabilities;
for (int i=0; i<10; i++){
std::packaged_task<bool(long)> task(isReachable);
availabilities.emplace_back(task.get_future());
std::thread t(std::move(task),ips[i]);
threads.emplace_back(std::move(t));
}

for (auto& thr : threads) thr.join(); int n=0;
for (auto& avail : availabilities) if(avail.get()) n++;
std::cout << "Nodes available: " << n << std::endl;
}

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

38

Getting Back the Return Value

§ std::packaged_task: wraps a callable (function, lambda, bind), gives
handle to the result via a future

// includes of: <thread> <functional> <future> <algorithm> <utility>

bool isReachable(long ip){[…];return pingResult;};
[…]
std::vector<std::thread> threads;
std::vector<std::future<bool>> availabilities;
for (int i=0; i<10; i++){
std::packaged_task<bool(long)> task(isReachable);
availabilities.emplace_back(task.get_future());
std::thread t(std::move(task),ips[i]);
threads.emplace_back(std::move(t));
}

for (auto& thr : threads) thr.join(); int n=0;
for (auto& avail : availabilities) if(avail.get()) n++;
std::cout << "Nodes available: " << n << std::endl;
}

All of this is complex.
Direct thread management does not suit complex applications:
• Overhead of creating and destroying threads
• Risk to overcommit the machine
• Better to focus on “packetisation” of work rather than manual
thread management (done at the whiteboard, not at the terminal)

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

39

The Thread Pool Model
§ Thread pool: ensemble of worker threads which are …

§ Initialised once, consuming work from …

§ .. A work queue …

§ .. to which elements of work (lambdas, tasks, …) can be added

Hard to program in an optimised and general way!
(usually provided by 3rd part libraries)

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

40

Processes in Python/C++
Python

§ Handy multiprocessing module

C++

§ Nothing in the STL

§ Some alternative libraries, e.g.
ROOT* TProcessExecutor

* root.cern.ch

from multiprocessing import Process, Pool

def f(name):
print 'hello', name

def g(x):
return x*x

p = Process(target=f, args=('bob',))
p.start()
p.join()

p = Pool(5)
p.map(g, [1, 2, 3])

§ No memory shared: need to serialise objects to communicte

§ Natural in Python, advanced in C++: needs introspection!
J

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

41

Elements of TBB

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

42

An Example: TBB
§ A free and open source C++ library for parallel programming

§ Takes care of managing multitasking

§ An Intel product, actively maintained

§ A GPL (+ Runtime Exception) - Intel library exists as well

§ C++14 ready: lambdas, move semantics

§ Can be mixed with other threading mechanisms
§ STL threads

§ Good documentation available, comprehensive examples

§ Task scheduler, generic parallel algorithms, concurrent containers
§ Plus TLS, TBB Flow Graph, synch primitives, memory allocators

More in the next lecture

Among other features, readily usable implementation
of 3 important concepts in parallel programming

www.threadingbuildingblocks.org

1 2 3

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

43

TBB Task Scheduler In a Nutshell
§ Single main and local thread task queues

§ Interfaced with a thread pool (automatically initialised), dispatches work to
workers
§ Maps logical work items, tasks, onto physical threads

§ Takes care of load balancing. Rule of the thumb: provide many more
tasks than threads in the pool
§ Work stealing: before sleeping, a thread overtakes work from other

threads

§ Tasks organised in a directed graph
§ Tasks can have a continuation tasks (profit from hot caches)
§ Tasks can inject N tasks in the scheduler, they have priority
§ Depth-first approach: deepest -> most recent -> hotter cache

§ Lots of features:
§ Sometimes needed: parallel HEP frameworks, File systems

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

44

A Graphical Representation

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

45

Task in Action

#include <tbb/task.h>
Class myTask: public tbb::task {
public:
myTask([args])
tbb::task* execute() {
do_work();
return 0;
}
};
myTask* t = new(tbb::task::allocate_root()) myTask([args]);
tbb::task::enqueue(*t);

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

46

Task in Action

#include <tbb/task.h>
class myTask: public tbb::task {
public:
myTask([args])
tbb::task* execute() {
do_work();
return nullptr;
}
};
auto t = new(tbb::task::allocate_root()) myTask([args]);
tbb::task::enqueue(*t);

Task interface

Enqueue: push to main queue
Spawn: push into local queue

Inherited method called by TBB runtime

Can return a child task

Special TBB overloaded new. Several
available: example: allocate_child
Goal: fine tune performance of
scheduler.

Other programming models allow task parallelism, for example OpenMP4…

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

47

Parallel For
§ Task based parallelism behind the scenes

§ Thread pool and scheduler initialised lazily once behind the scenes

§ C++ - Template function, lambda: real syntactical advantage

§ Partitioning of the work in chunks managed by the runtime
§ Can be tuned

void sum(const int* in1, const int* in2, std::size_t size, int* out) {
tbb::parallel_for(std::size_t(0), size,

[=](std::size_t i) {
out[i] = in1[i] + in2[i];
});

}

Lambda

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – Pragmatic Parallelism

48

Take Away Messages
§ Designs that follows principles like data and task parallelism

lead to scalable and performant applications
§ Focus on algorithms and data structures!

§ Asynchronous execution and non-determinism permeate
concurrent applications:
§ Paradigm shift needed to understand and design parallel software

solution
§ Phase space of possible issues bigger than in the sequential case
§ … And we did not talk about resource protection yet!

§ Abstraction needed: e.g. thread pool
§ Do not forget the basics: ownership, OS, hardware.
§ Rely on 3rd party products à more time to focus on your problem

