Demonstration of a simple experimental setup using fast electronics

RYU, Min Sang RISP/IBS

BICRON BC408 + PMT

> CAEN (www.caen.it)
> N412 8ch Fast amplifier N401 Quad Linear Fan-in Fan-out
> N413 8ch Fast discriminator N405 Triple 4-fold logic unit N145 Quad scaler and counter timer

ORTEC (www.ortec-online.com) 659 5kV Bias supply
660 Dual Bias supply

(https://teledynelecroy.com/lrs/dsheets/dslib.htm)
 LeCroy Research Systems 1403 Power chassis

TEST SETUP: Scintillation counter

J. PHYS. A: GEM. Phys. 1584 (1968), I. S. Jones et al, Ionization energy loss of muons in a plastic scintillator

Figure 3. The results of Ashton and Simpson (1965), Crispin and Hayman (1964), Smith and Stewart (1966) and the present work, showing the consistently observed increase in energy loss over the momentum range $5-30 \mathrm{Gev} / \mathrm{c}$.

TEST SETUP: NIM bin/crate

Nuclear Instrumentation Module (NIM): mechanical and electrical specifications for electronics modules used in experimental particle and nuclear physics.

First defined by the U.S. Atomic Energy Commission's report TID-20893 in 1968-1969, NIM was most recently revised in 1990 (DOE/ER-0457T).

Output voltage: $\pm 6 \mathrm{~V}, \pm 12 \mathrm{~V}$, and $\pm 24 \mathrm{~V}$ DC Size: H222xW34.3xD246 mm (except backplane power connector)

LeCroy Research Systems

(https://teledynelecroy.com/lrs/dsheets/dslib.htm) 1403 Power chassis

Operating range: $5-60^{\circ} \mathrm{C}$

Max. power: 200 W
Output voltage (max. current):
$\pm 6 \mathrm{~V}(10 \mathrm{~A}) \mathrm{DC}$
$\pm 12 \mathrm{~V}$ (6 A) DC
$\pm 24 \mathrm{~V}(2 \mathrm{~A}) \mathrm{DC}$
Ripple: 3 mV peak-to-peak (50 MHz bandwidth)
Regulation: $\pm(0.01 \%+0.5 \mathrm{mV})$ line or load
Temperature coefficient: <100 ppm/ ${ }^{\circ} \mathrm{C}$
Long term stability: $<0.1 \% /$ day at constant load temperature. Measured after 1 hour warm-up.

Response time: settles to within 0.1% of final value in less than 50μ for $10-100 \%$ load change

TEST SETUP: High Voltage Power Supply (HVPS)

ORTEC (www.ortec-online.com)
659 5kV Bias supply

Bias voltage ranges: $0 \sim 5 \mathrm{kV}$, or $0-500 \mathrm{~V}$, on separate outputs
Bias voltage polarity: Positive or negative, internally selectable
Rated output current: 0-100 $\mu \mathrm{A}$ (?)
Output linearity: within $\pm 3 \%$ of dial setting in range (10-100\%)
Temperature sensitivity of output voltage: $< \pm 0.08 \% /{ }^{\circ} \mathrm{C}$ in $10-50{ }^{\circ} \mathrm{C}$
Voltage stability: $< \pm 0.1 \% / \mathrm{h}$ variation in output voltage with constant temperature, constant load, and constant input voltages from the NIM bin

Noise and ripple: $<10 \mathrm{mV}$ peak-to-peak in range ($2 \mathrm{~Hz}-50 \mathrm{MHz}$)
Output voltage rise time: normally 500 ms
Bias shutdown input: Rear-panel BNC connector accepts signals from warmup sensors in cooled germanium detectors. When a warmup is signaled, this input turns off the detector bias voltage in order to protect the preamplifier FET input. The ORTEC/TTL/ BYPASS jumper selects the operating mode of the BIAS SHUTDOWN input for compatibility with the warmup sensor in the associated Ge detector.

TEST SETUP: Amplifier

CAEN (www.caen.it) N412 8ch Fast amplifier

2.1 PACKAGING

1-unit wide NIM module.

2.2 EXTERNAL COMPONENTS

CONNECTORS:

- No. 8 LEMO 00 type ${ }^{*}$ IN1..IN8*. Input connectors 1 to 8.
- No. 16 LEMO 00 type "OUT". Output connectors 1 to 8 (two per channel).

TRIMMERS:

No. 8 screwdriver trimmers "ZERO ADJ" (one per channel). For the output offset adjustment.
2.3 CHARACTERISTICS OF THE SIGNALS

```
INPUTS:
    -50\Omega impedance
    -Reflection coefficient: \leq6% over input dynamic rarıge.
    -Quiescent voltage: <\pm5 mV.
```

OUTPUTS:
Risetime: $\leq 3.0 \mathrm{~ns}$.
Fallime: $\leq 2.0 \mathrm{~ns}$.
- Maximum positive amplitude (linear): 400 mV (50s impedance).
Maximum negative amplitude (linear): -4 V (50 impedance).

- Overshoot: $\pm \mathbf{1 0 \%}$ for input risetimes of 2 ns and with the and output terminated in 50Ω.

Quiescent voltage adjustable (via front panel trimmer for each channel) in the range from -20 mV to +50 mV

GENERAL

Gain: fixed $10 \pm 3 \%$, non-inverting.

- Coupling: direct

VO delay: $\leq 12 \mathrm{~ns}$.

- Noise: less than 1 mV , referred to input.
- Interchannel crosstalk: better than -56 dB in the worst test condition, and with both the outputs of the tested channel terminated in 50Ω.

Bandwidth:

- 160 MHz (with both the channer's outputs terminated in 50 S 2);
- 180 MHz (single ended output).
2.4 POWER REQUIREMENTS (quiescent conditions)

TEST SETUP: Fan-In Fan-Out

CAEN (www.caen.it)
 N401 Quad Linear Fan-in Fan-out

Single input $\rightarrow 4$ identical output signals ($\pm 1 \times$ Gain)

Several inputs \rightarrow output signals (sum of all input's amplitude)

Single width NIM module

Power requirements

+12 V at $750 \mathrm{~mA},-12 \mathrm{~V}$ at 750 mA
+6 V at $550 \mathrm{~mA},-6 \mathrm{~V}$ at 330 mA

Bandwidth

For small signal, DC to $\mathbf{1 7 0} \mathbf{~ M H z}$, at -3 dB with and inputs of $0.1 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ and the unused outputs (50Ω termination)
For large signal, DC to $\mathbf{1 1 0} \mathbf{~ M H z}$, at -3 dB with and inputs of $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ and the unused outputs (50Ω termination)

4 independent sections

INPUT: negative, positive, or bipolar
DC-coupled linear signal, linear range $\pm 1.5 \mathrm{~V}$
Impedance: $50 \Omega \pm 1 \%$
Reflection: less than 10% for inputs of 2 ns rise time DC level: less than $\pm 2 \mathrm{mV}$

OUTPUT: integral non linearity: $\pm 1 \%$ up to 1 V
dynamics $\pm 1.5 \mathrm{~V}$
rise/fall time: <=2.5 ns in 10-90\% of outputs
(unused = terminated in 50 ohm)
Gain: $1.0 \pm 2 \%$ in the linear range
Crosstalk: better than 40 dB
noise: <=300 μ V RMS
Stage delay: <= 7 ns
4 input/output connectors per a section: LEMO 00 type
DC BAL: external screwdriver trimmer
adjust output offset within $\pm 100 \mathrm{mV}$
Inverting or non inverting mode: internal 3-jumper switch
Both the input and output signals are DC coupled, with no duty-cycle limitation.

Input/Output delay: < 11 ns

TEST SETUP: Discriminator

CAEN (www.caen.it) N413A 8ch Fast discriminator

Analog or digital inputs \rightarrow threshold $\&$ width \rightarrow NIM pulse

150 MHz maximum operating frequency

Adjustable output width per channel
Thresholds independently adjustable via front panel trimmer and 3 digit voltmeter
Common VETO input
Current Sum output

Single width NIM module
8 independent non-updating discriminator
For each channel chosen by three DIP switches on the front panel,
Threshold: -20 mV to -1 V via front panel trimmers
display value on front panel
Output width: 5 ns to 150 ns via front panel trimmer.
two NIM outputs per channel
normal logic and 1 NIM output in complementary logic
"SCOMM": analog output which supplies a current of -2 mA per channel over the relevant threshold.

A common VETO input signal disables the output signals of all the channels.
INPUTS: 50 ohm impedance
Polarity: Negative
Max. Input: 0 to -3.5 V
Max. Frequency: 150 MHz
Min. VETO Width: 3 ns

OUTPUTS: Std. NIM level.

Rise/Fall Time: 2.5 ns
Width: adjustable in the range 5 ns to 150 ns SCOMM: - 2 mA for each channel over threshold

TEST SETUP: Logic Unit

```
CAEN (www.caen.it)
N405 Triple 4-fold logic unit/Majority with VETO
```

AND or OR logic with digitized pulse (ex, NIM pulse)

Three independent sections with 4 standard NIM inputs each
AND, OR, MAJORITY function selectable for each section
One auxiliary NIM output per section whose width is equal to the coincidence duration NIM shaped outputs with Fan Out of two

One negated NIM shaped output per section
One VETO input per section
Front panel trimmer for output width adjustment on each section

Single width NIM module

Three independent sections
Logic unit or majority selectable via internal DIP switches

For each section

4 input signals
4 outputs (2 normal and 1 complementary, shaped, plus 1 linear)
1 VETO input
Linear output (same time width of input signals)
Shaped output widths: 6 ns to 800 ns

LOGIC UNIT MODE

The input signals can be disabled by means of a front panel lever switch.
Each section can be programmed to perform either the AND or the OR functions via front panel switches.
When only one input signal is enabled the section acts as a logic FAN-OUT independently from the selected mode.

MAJORITY MODE

The front panel enable/disable lever switches are used to set the majority level.
The AND/OR lever switch must be set in the AND position.

TEST SETUP: Scaler and counter timer

CAEN (www.caen.it)

N145 Quad scaler and counter timer

How many event occur in a certain time? \rightarrow DAQ time set with trigger pulse? \rightarrow GATE for a certain event? $\rightarrow \mathbf{1 0 0 0}$ events

TEST SETUP: Oscilloscope

Bandwidth:

maximum frequency of an input signal which can pass through the analog front end of the scope with minimal amplitude loss

If you require 3% accuracy, you need to derate it by a factor of $\sim 0.3 x$, so a $\mathbf{3 5 0} \mathbf{~ M H z}$ scope can accurately measure 105 MHz to $\mathbf{3 \%}$.

Sampling rate:

maximum number of samples per second

FAST ELECTRONICS: Radio Guide (RG) Cables

http://www.l-com.com/content/Article.aspx?Type=N\&ID=10336

RG174/U	NOMINAL ATTENUATION		
	MHz	$\mathrm{db} / 100 \mathrm{ft}$	$\mathrm{db} / 100 \mathrm{~m}$
80.10]	50	5.8	19.0
䢒	100 200	88 12.4	27.6 41.0
50 Ohm Impedance	400	19.0	62.3
50 Ohm impedance	1000	34.0	11.5

RG316/U	NOMINAL ATTENUATION		
	MHz	$\mathrm{db} / 100 \mathrm{ft}$	$\mathrm{db} / 100 \mathrm{~m}$
$\cdots-\frac{1}{\text { cosem }}$	50 100	5.6 83	18.4
4	200	86 12.0	37.4
50 Ohm Impedance	400 1000	17.5 290	57.4 95.1

RG58C/U		NOMINAL ATTENUATION		
		MHz	$\mathrm{db} / 100 \mathrm{ft}$	db/100
	¢als	50	3.3 49	10.8
$\underline{+}$		100 200	7.3	16.1 23.9
50 Ohm Impedance	4	400 1000	11.0 20.0	36.1 65.6

RG59A/U		nominal attenuation		
		$\begin{gathered} \text { MHz } \\ 50 \\ 100 \\ 200 \\ 400 \\ 1000 \end{gathered}$	$\mathrm{db} / 100 \mathrm{ft}$2.84.05.98.513.8	$\mathrm{db} / 100 \mathrm{~m}$9.21.119.427.945.3
	Name			
75 Ohm Impedance	1			
RG59B/U		NOMINAL ATTENUATION		
		MHz	db/100 ft	$\mathrm{db} / 100 \mathrm{~m}$
	(oas4in	${ }^{50}$	2.4	7.9
		100 200	3.4 4.9	11.1 16.1
75 Ohm Impedance	4	$\begin{array}{r}200 \\ 1000 \\ \hline\end{array}$	7.0 12.0	23.0 39.3

How fast signals move in cables? $\mathrm{v}_{\text {signal }}=\sim 5 \mathrm{~ns} / \mathrm{m}$

	$c(\mathrm{~m} / \mathrm{s})$	Velocity Fraction $(\%)$	$v(\mathrm{~m} / \mathrm{s})$	$v(\mathrm{~m} / \mathrm{ns})$	$v(\mathrm{~cm} / \mathrm{ns})$	Connector type
Vacuum	$3.00 \mathrm{E}+08$	1	$3.00 \mathrm{E}+08$	0.300	30.0	
RG174	$3.00 \mathrm{E}+08$	0.66	$1.98 \mathrm{E}+08$	0.198	19.8	LEMO
RG316	$3.00 \mathrm{E}+08$	0.79	$2.37 \mathrm{E}+08$	0.237	23.7	LEMO
RG58	$3.00 \mathrm{E}+08$	0.66	$1.98 \mathrm{E}+08$	0.198	19.8	BNC

Power loss $\alpha_{P}(d B / k m)=\frac{10}{L} \log _{10}^{\left(P_{1} / P_{2}\right)}$
$\alpha_{p}=$ power attenuation, or loss between source and destination, unit (dB/km)
$\mathrm{P}_{1}=$ power at the beginning (Source), unit (W)
$\mathrm{P}_{2}=$ power at the end (Destination), unit (W)
$L=$ distance between P_{1} and P_{2}, unit (km)
If $\mathrm{P}_{1}=1 \mathrm{~W}, \mathrm{P}_{2}=0.5 \mathrm{~W}$, and $\mathrm{L}=0.1 \mathrm{~km}, \alpha_{P}=\frac{10}{0.1} \log _{10}^{(1 / 0.5)}=3.01 \mathrm{~dB} / 100 \mathrm{~m}$
Power at the distance (L) : $P_{2}=P_{1} \cdot \exp \left(-\alpha_{P} L\right)$

RG58/U: 20 AWG bare copper (28.5 pF/ft)
RG58A/U: 20 AWG standard thin copper (30.8 pF/ft)
RG58C/U: same as RG58A/U but not same outer jacket material
RG59A/U: 22 AWG bare compacted copper
RG59B/U: 22 AWG solid bare copper covered steel

FAST ELECTRONICS: RG Cables

Figure 2 - Coaxial Cable Impedances

A typical question is why 50 ohms?

Minimum attenuation at 76.7 ohm.
When more common dielectrics are considered, best-loss impedance drops down to a value between 52-64 ohm.

Maximum power handling is achieved at 30 ohm. The arithmetic mean between 30 and 77 ohm is 53.5 ohm; the geometric mean is 48 ohm.

The selection of $\mathbf{5 0 \Omega}$ as a compromise between power-handling capability and attenuation is in general cited as the reason for the number.

Power loss ($\mathrm{dB} / 100 \mathrm{~m}$) vs frequency (MHz) in coaxial cables

$$
\begin{aligned}
& \text { - - }- \text { - Loss_RG174/U (dB/100 m) - - }- \text { - Loss_RG316/U (dB/100 m) - - - - Loss_RG58C/U (dB/100 m) } \\
& \text { —e— Loss_RG59A/U (dB/100 m) —e- Loss_RG59B/U (dB/100 m) —— Loss_RG6/U (dB/100 m) }
\end{aligned}
$$

FAST ELECTRONICS: Connectors for signal and high voltage

Signal connection
LEMO (company founder, engineer Léon Mouttet)
name of an electronic and fibre optic connector manufacturer push-pull connectors

NIM, CAMAC, VME, detector, and etc
BNC (Bayonet Neill-concelman) connector: miniature quick connect/disconnect 50 or 75 ohm impedance frequencies below 4 GHz voltage below 500 V NIM, audio, video, detector and etc

SMA (Sub Miniature version A): semi-precision coaxial RF connectors screw-type coupling mechanism male $\Phi 0.312$ in ($\Phi 7.9 \mathrm{~mm}$) $0-18 \mathrm{GHz}$ passband (some up to 26.5 GHz)
 detector and etc

High voltage connection MHV (miniature high voltage): type of RF connector used for terminating a coaxial cable

SHV (safe high voltage) connector: safer handling HV than other connectors standard: up to 5 kV (5 A)
higher-version: 20 kV or more
NiM, detector, and etc

FAST ELECTRONICS: TDC and ADC

CAEN V1290N-2eSST

16 ch Multihit TDC (25 ps)

25 ps LSB (Least significant bit)

21 bit resolution
$52 \mu \mathrm{~s}$ full scale range
NIM Input Signals
5 ns Double Hit Resolution
Leading and Trailing Edge detection
Trigger Matching and Continuous Storage acquisition modes
$32 k \times 32$ bit output buffer
MBLT, CBLT and 2eSST data transfer
Multicast commands
Live Insertion
Libraries, Demos (C and LabView) and Software tools for Windows and Linux

CAEN V1785

8ch dual range multi-event peak sensing ADC
Two simultaneous ranges: $0 \sim 4 \mathrm{~V} / 0 \sim 500 \mathrm{mV}$
Resolution: 12 bit $(4,096)$
Dynamics range: 15 bit $(32,768)$
Least significant bit (LSB)
$125 \mu \mathrm{~V}$ LSB on low range (500 mV)
1 mV LSB on high range (4 V)
$2.8 \mu \mathrm{~s} / 8 \mathrm{ch}$ conversion time
600 ns fast clear time
Zero and overflow suppression for each channel
± 0.1 \% Integral non linearity
± 1.5 \% Differential non linearity
32 event buffer memory
BLT32/MBLT64/CBLT32/CBLT64 data transfer
Multicast commands
Live insertion

FAST ELECTRONICS: TDC calibration

T_full = 100 ns with 10 bit (1024) data set

100 ns
1024 bin
$0.09765625 \mathrm{~ns} / \mathrm{bin}$

delay (ns)	unit time (ns/bin)	TDC (bin)
10	0.09765625	102.4
20	0.09765625	204.8
30	0.09765625	307.2
40	0.09765625	409.6
50	0.09765625	512
60	0.09765625	614.4
70	0.09765625	716.8
80	0.09765625	819.2
90	0.09765625	921.6
100	0.09765625	1024

TDC (bin) vs Delay time (ns)

COMMON STOP MODE

FAST ELECTRONICS: ADC calibration

Q_in (pC)	unit time (pC/bin)	ADC (bin)
0.1	0.000976563	102.4
0.2	0.000976563	204.8
0.3	0.000976563	307.2
0.4	0.000976563	409.6
0.5	0.000976563	512
0.6	0.000976563	614.4
0.7	0.000976563	716.8
0.8	0.000976563	819.2
0.9	0.000976563	921.6
1	0.000976563	1024

Time domain of signals for ADC calibration

Δt_{1} and Δt_{2} depends on charge and shape of signal (ex, 10 ns or more).

