Dream machine & Geant4 Instruction

Hanwook Bae Kyungpook National University

SPDAK 2019

Contents

- 1. DREAM cluster / Connection
- 2. Configuring
- 3. BGOS Simulation code
- 4. Making detector geometry in Geant4
- 5. Adding a CsI(Tl) Crystal

DREAM cluster

- There are two servers of DREAM cluster dream01.knu.ac.kr / dream02.knu.ac.kr
- Each server has 40 cores of CPU
- You should connect to one of the servers using SSH client and Xming (for Windows users) or just SSH client (for Linux users)

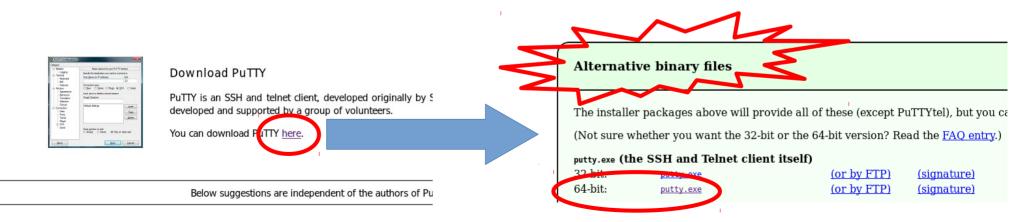
How to connect to DREAM cluster (for Linux users)

 command: ssh -XY [userID]@dream01.knu.ac.kr
 OR ssh -XY [userID]@dream02.knu.ac.kr

```
[qogksdnr@HANYUU ~]$ ssh -XY qogksdnr@dream01.knu.ac.kr
Last login: Thu Dec 27 16:29:03 2018 from 155.230.153.109
[qogksdnr@dream01 ~]$ whoami
[qogksdnr
[qogksdnr@dream01 ~]$ pwd
/home/qogksdnr
[qogksdnr@dream01 ~]$
```

How to connect to DREAM cluster (for Windows users)

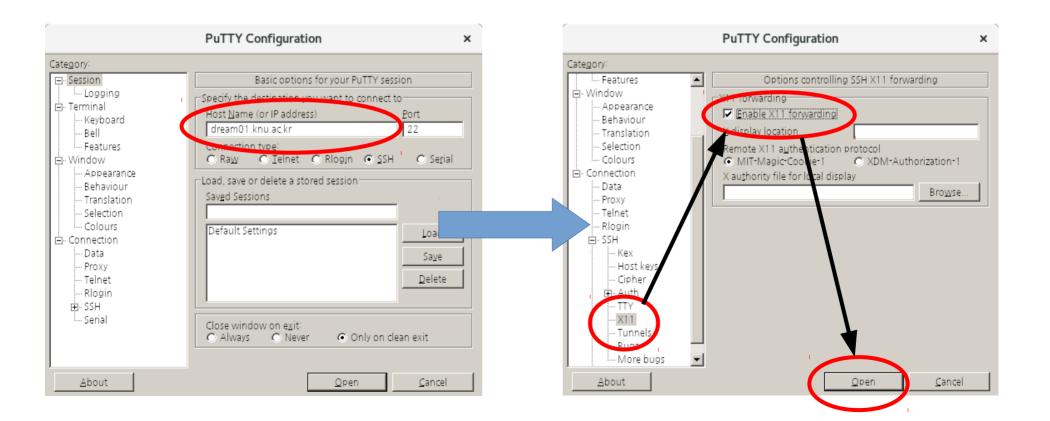
• Download Xming server for Windows (from: https://sourceforge.net/projects/xming/) or just google a keyword of "xming"



Xming is the leading X Window System Server for Microsoft Windows 8/7/Vista/XP (+ server 2012/2008/2003). It is fully featured, small and fast, simple to install and because it is standalone native Microsoft Windows, easily made portable (not needing a machine-specific installation).

Project Samples

How to connect to DREAM cluster (for Windows users)


- Download Putty: (from: https://www.putty.org/) of just google "putty"
- In the above link...

How to connect to DREAM cluster (for Windows users)

- Install Xming → Execute the Xming server
- Set X11 forwarding setting for putty
- Connect to the DREAM cluster

Example for connection with putty

Configuring to use Geant4 & ROOT

- The path of common directory for this school: /gatbawi/palgongsan/spdak2019
- Copy the bash profile to your home directory : cp /gatbawi/palgongsan/spdak2019/bash_profile_2019 ~/.bash_profile
- Logout and re-login to DREAM cluster

Configuring to use Geant4 & ROOT

• Example for configuring: Entering the common directory and copy the bash profile to the home directory.

```
[qogksdnr@dream01 ~]$ pwd
/home/qogksdnr
[qogksdnr@dream01 ~]$ cd /gatbawi/palgongsan/spdak2019/
[qogksdnr@dream01 spdak2019]$ ls
bash_profile_2019
[qogksdnr@dream01 spdak2019]$ cp bash_profile_2019 ~/.bash_profile
[qogksdnr@dream01 spdak2019]$
```

Configuring to use Geant4 & ROOT

• Logout and re-login to the cluster then check settings for Geant4 & ROOT

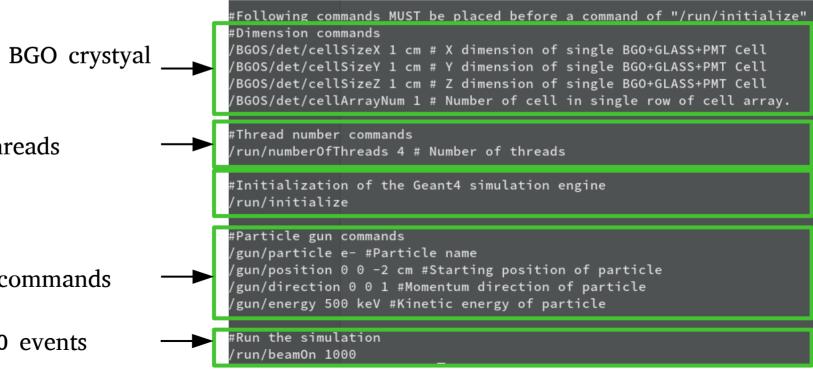
```
[qogksdnr@dream01 ~]$ exit
logout
Connection to dream01.knu.ac.kr closed.
[qogksdnr@HANYUU ~]$ ssh -XY qogksdnr@dream01.knu.ac.kr
Last login: Thu Dec 27 16:39:51 2018 from 155.230.153.109
[qogksdnr@dream01 ~]$ echo $R00TSYS
/gatbawi/palgongsan/sw/root/6.06.02/x86_64/sl6-gcc4.9.3
[qogksdnr@dream01 ~]$ echo $G4LEDATA
/gatbawi/palgongsan/sw/Geant4/10.04.p02/x86_64/sl6-gcc4.9.3/share/Geant4-10.4.2/data/G4EMLOW7.3
```

BGOS Simulation Framework

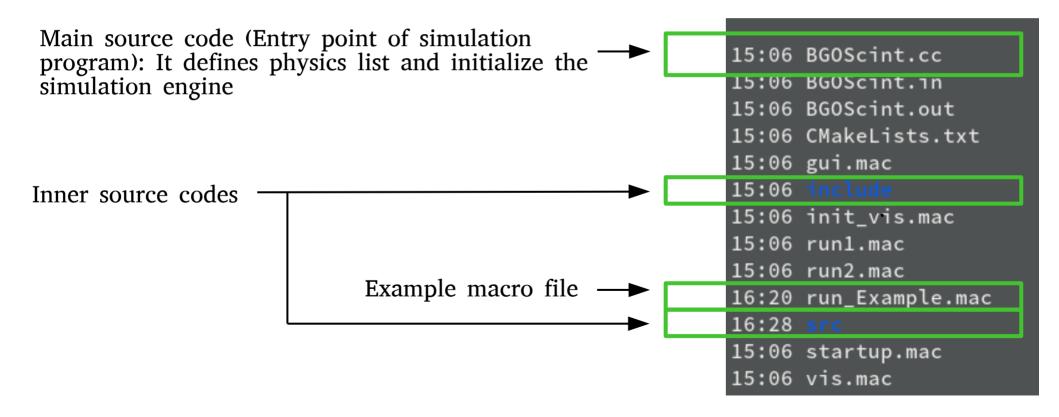
- BGOS: BGO Simulation
- A simple Geant4 simulation source code with BGO scintillation crystal
- Skeleton source code is located at /gatbawi/palgongsan/spdak2019/BGOS/source_XXXX on the cluster
- Copy the entire source code directory to some directory

cd /gatbawi/palgongsan/spdak2019/BGOS cp -r source /to/some/directory

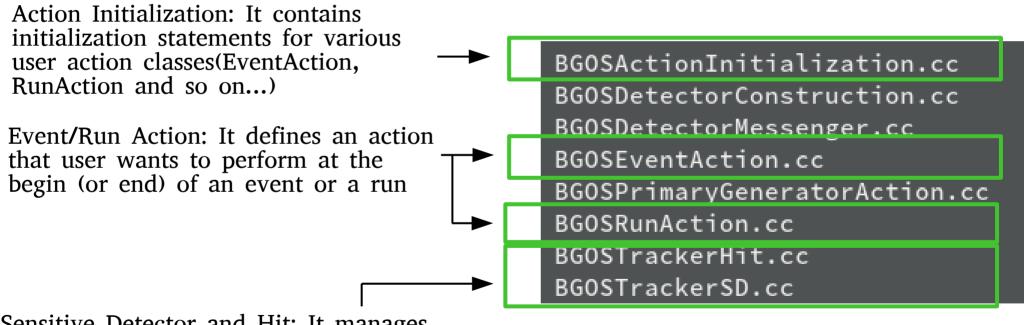
Example macro of BGOS code


• Content of run Example.mac

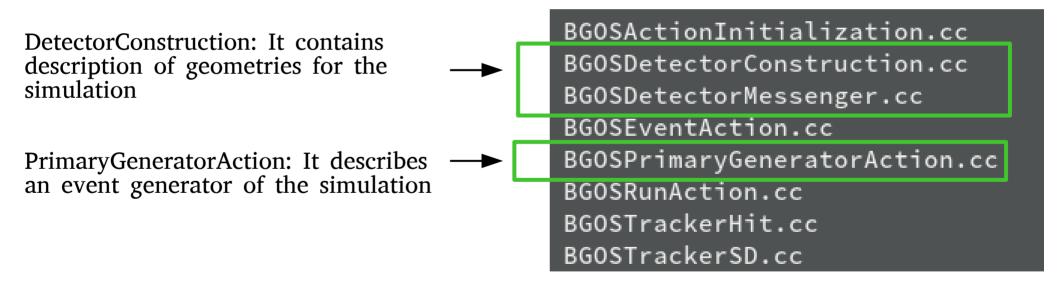
Dimension of BGO crystyal (X, Y, Z)


Number of threads

Partigle gun commands


Simulate 1000 events

Structure of BGOS code



Inner structure of BGOS code

Sensitive Detector and Hit: It manages the behaviour of our PMT

Inner structure of BGOS code

The tuple

• Tuple is a data structure for storing finite sequence of an element

Example: (1, 2, 5, 7, 3, 2, 1) OR (Z, A, B, E, A, C, A, B) ...

- Tuple can have multiple elements and if the tuple has set of N elements, the tuple is called "N-tuple"
- Example of N-tuple: Personal information book Elements of i-th entry: Name, Sex, Age, City... (["Momo", "Female", 24, "Seoul"], ["Nayeon", "Female", 25, "Seoul"], ["Hanwook", "Male", 28, "Daegu"])

Output file of BGOS

- BGOS code creates a .ROOT file as its output
- The file contains an N-tuple named "NT"
- NT tuple consists of two elements: PECount, BGOEdep
- If you run the simulation in multithreading mode, the output file will be written separaterly by each thread

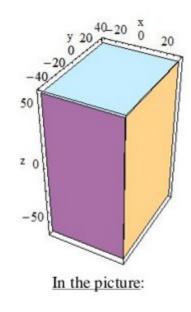
Description of each element

- PECount: Number of counts of photoelectrons emitted from BGO crystal in a single event
- BGOEdep: Total amount of energy deposit on BGO crystal in a single event

How to define a thing in Geant4

- In the real world, various properties needs to tell about an object: shape, color, conductivity, transparency, and so on...
- In Geant4, only two minimal properties are required to perform the detector simulation: Shape and Material
- This information is managed by the G4LogicalVolume class.
- We can add a thing in Geant4 world by creating a logical volume with proper parameters: Shape and Material

How to describe the shape

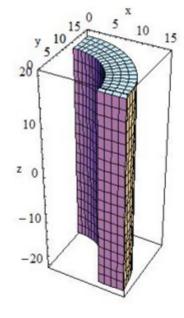

- First of all, Geant4 requires the shape of an object for the simulation (this is called Solid)
- This information can be dealt with Geometry classes: G4Tubs, G4Box, G4Sphere etc...
- Every geometry classes requires the name of solid
- Further parameter will be needed to set the dimension of a solid and this is different

Example of solids - Box

Box:

To create a box one can use the constructor:

G4Box(const G4String& pName, G4double pX, G4double pY, G4double pZ)


pX = 30, pY = 40, pZ = 60

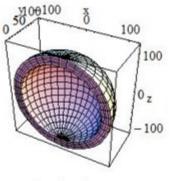
Example of solids - Tube

Cylindrical Section or Tube:

Similarly to create a cylindrical section or tube, one would use the constructor:

G4Tubs(const G4String& pName, G4double pRMin, G4double pRMax, G4double pDz, G4double pSPhi, G4double pDPhi)

In the picture:


pRMin = 10, pRMax = 15, pDz = 20

Example of solids - Sphere

Sphere or Spherical Shell Section:

To build a sphere, or a spherical shell section, use:

G4Sphere (const	G4String&	pName,
	G4double	pRmin,
	G4double	pRmax,
	G4double	pSPhi,
	G4double	pDPhi,
	G4double	pSTheta,
	G4double	pDTheta)

In the picture:

pRmin = 100, pRmax = 120, pSPhi = 0*Degree, pDPhi = 180*Degree, pSTheta = 0 Degree, pDTheta = 180*Degree

How to define a material

- The information of material is also important for the detector simulation
- G4Material class manages this task
- This class contains density and abundance of elements consist of the material
- The material can be constructed from element information, another material or NIST data

Three ways to define the material

• From elements

```
// Build elements of Oxygen and Nitrogen
_elementN = new G4Element(name = "Nitrogen", symbol = "N", z = 7, a = 14.01 * g / mole);
_element0 = new G4Element(name = "Oxygen", symbol = "O", z = 8, a = 16.00 * g / mole);
name = "Air";
density = 1.29e-3 * g / cm3;
nelements = 2;
// Define material of Air
_air = new G4Material(name, density, nelements);
_air->AddElement(_elementN, 70 * perCent);
_air->AddElement(_element0, 30 * perCent);
```

Three ways to define the material

• From another material

// Defines another material consists of new material
_SiRubber = new G4Material(name, density, nelements);
_B4C = new G4Material(name, density, nelements);

// Create new material and add other materials
_B4CRubber24perCent = new G4Material(name, density, ncomponents = 2);
_B4CRubber24perCent->AddMaterial(_B4C, 24. * perCent);
_B4CRubber24perCent->AddMaterial(_SiRubber, (100. - 24.) * perCent);

requires another material defined with elements

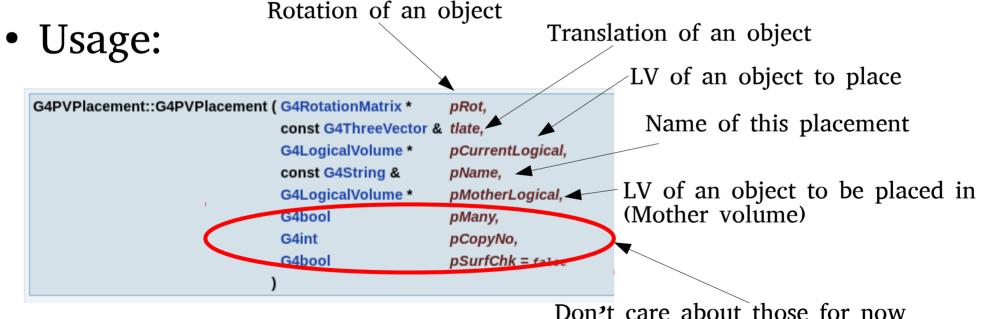
Three ways to define the material

• Using NIST database

// Glass and Aluminium definition with NIST database
G4Material *Air = nistManager->FindOrBuildMaterial("G4_AIR");
G4Material *Aluminium = nistManager->FindOrBuildMaterial("G4_AL");
G4Material *Glass = nistManager->FindOrBuildMaterial("G4_GLASS_PLATE");

Gean4 provides pre-defined material database from NIST databook (also you can construct an element from the databook)

The logical volume (LV)


- The logical volume is an image of a thing in Geant4 simulation
- This class equivalent to an object in the real world such as a single crystal or detector
- The logical volume can contain another logical volume, thus they have hierarchical structure

How to place the Logical Volume

- In the real world, an object can be placed inside of another object with translation and rotation
- In Geant4, LV is placed at some position and it can be rotated in another LV
- G4PVPlacement has the information for arrangement of single G4LogicalVolume in another one

G4PVPlacement

• This class manages the 3D transformation of a LV

Example – Let there be world!

• The world MUST not have any rotation, translation, and mother volume

G4VPhysicalVolume *worldPV = new G4PVPlacement(0, // no rotation G4ThreeVector(), // at (0,0,0) worldLV, // its logical volume "World", // its name
worldLV, // its logical volume
"World", // its name
0, // its mother volume
false, // no boolean operations
0); // copy number

Example – Put a box in the world

```
// Single Box (G4Box/G4Material) -> G4LogicalVolume -> G4PVPlacement
G4Box *BBox = new G4Box("BBox", fCellArraySize * fCellSizeX / 2,
fCellArraySize * fCellSizeY / 2, totalArraySizeZ / 2.);
G4Material *air = G4NistManager::Instance()->FindOrBuildMaterial("G4_AIR");
G4LogicalVolume *BBoxLV = new G4LogicalVolume(BBox, air, "BBox");
// Place the box
new G4PVPlacement(0,
                                        // no rotation
  G4ThreeVector(0, 0, 0), // at (0,0,0)
  BBoxLV, // its logical volume

"BBoxPV", // its name

worldLV, // its mother volume

false, // no boolean operatio
                                        // no boolean operations
   // copy number
```

Adding CsI(Tl) Crystal

- CsI(Tl) crystal is a common-used scintillation crystal for the particle detection
- Let's make a CsI(Tl) crystal in the world of Geant4!

Prop	erties of CsI(Tl) crystal	
	Properties	Value
~	Density [g/cm ³]	4.51
4	relting point [K]	894
	Thermal expansion coefficient [C ⁻¹]	54 x 10 ⁻⁶
The most important properties!!	Cleavage plane	None
	Hardness (Mohs)	2
	Hygroscopic	Slightly
	Wavelength of emission max. [nm]	550
	Lower watelength cutoff [nm]	320
	Refractive index @ emission man	1.79
	Primary decay time [ns]	1000
	Light yield [photons/keVy]	54
	Photoelectron yield [% of NaI(Tl)] (for γ-rays)	45

Properties of CsI(Tl) crystal

Properties	Value
Density [g/cm ³]	4.51
Melting point [K]	894
Thermal expansion coefficient [C ⁻¹]	54 x 10 ⁻⁶
Cleavage plane	None
Hardness (Mohs)	2
Hygroscopic	Slightly
Wavelength of emission max. [nm]	550
Lower wavelength cutoff [nm]	320
Refractive index @ emission max	1.79
Primary decay time [ns]	1000
Light yield [photons/keVγ]	54
Photoelectron yield [% of NaI(TI)] (for γ-rays)	45

But, there is one more thing...

- - -

Properties	Value
Density [g/cm ³]	4.51
Melting point [K]	894
Thermal expansion coefficient [C ⁻¹]	54 x 10 ⁻⁶
Cleavage plane	None
Hardness (Mohs)	2
Hygroscopic	Slightly
Wavelength of emission max. [nm]	550
Lower wavelength cutoff [nm]	320
Refractive index @ emission max	1.79
Primary decay time [ns]	1000
Light yield [photons/keVγ]	54
Photoelectron yield [% of NaI(TI)] (for γ-rays)	45

That's it!

Definition of CsI(Tl) crystal

- Step1: construct elements (Cs, I)
- Step2: define CsI material with G4Material
- Step3: add the elements into CsI material

```
// Construct the Cesium and Iodine
G4Element *elementCs = nistManager->FindOrBuildElement("Cs");
G4Element *elementI = nistManager->FindOrBuildElement("I");
// Make the CsI material
G4Material *materialCsI = new G4Material("CsI", density = 4.51 * g / cm3, nelements = 2);
materialCsI->AddElement(elementCs, 1);
materialCsI->AddElement(elementI, 1);
```

Dopping the thallium (Optional)

- Step1: build Tl material w/ single element(Tl)
- Step2: define CsI(Tl) material w/ G4Material
- Step3: add the elements into CsI material

// Build the dopant material (Thallium)
G4Material *dopantTl = nistManager->FindOrBuildMaterial("G4_Tl");

// Dopping the thallium into CsI material

G4Material *materialDoppedCsI =

new G4Material("CsI:Tl", density = 4.51 * g / cm3, nmaterials = 2); materialDoppedCsI->AddMaterial(dopantTl, concentrationOfTl = 0.001 * perCent); materialDoppedCsI->AddMaterial(materialCsI, 100 * perCent - concentrationOfTl);

Add the optical properties

- It might need to add additional properties to material for additional physical processes
- In the simulation with scintillator, user have to add the optical properties to simulate behavior of optical photon (NOT for gammas) Example: Refractive index, Light yield, ...
- Those properties are just optional things for detector simulation, so Geant4 provides additional material information class: G4MaterialPropertiesTable

Optical properties for CsI(Tl)

- For the optical photon simulation, refractive index must be included in material property
- Also, various factor is required for scintillation process!
- In our simulation, three values are needed for CsI(Tl)

	Refractive index @ emission max	1.79
	Primary decay time [ns]	1000
	Light yield [photons/keVγ]	54

Tell optical properties to Geant4

```
// Declear the M.P.T.
G4MaterialPropertiesTable *CsI_mt = new G4MaterialPropertiesTable();
```

```
// Define the energy region for optical properties
G4double CsI_Energy[] = {1.0 * eV, 2.5 * eV, 5.0 * eV};
// Relative intensity of scintillation light over specified energy range
G4double CsI_SCINT[] = {1., 1., 1.};
// Refractive index of CsI(Tl) crystal
G4double CsI_RIND[] = {1.79, 1.79, 1.79};
// Absorption length of CsI(Tl) crystal for optical photons
G4double CsI_ABSL[] = {10. * m, 10. * m, 10. * m};
```

Tell optical properties to Geant4

CsI_mt->AddProperty("FASTCOMPONENT", CsI_Energy, CsI_SCINT, 3); CsI_mt->AddProperty("RINDEX", CsI_Energy, CsI_RIND, 3); CsI_mt->AddProperty("ABSLENGTH", CsI_Energy, CsI_ABSL, 3);

CsI_mt->AddConstProperty("SCINTILLATIONYIELD", 54. / keV); CsI_mt->AddConstProperty("RESOLUTIONSCALE", 1.0); CsI_mt->AddConstProperty("FASTTIMECONSTANT", 1000. * ns); CsI_mt->AddConstProperty("YIELDRATIO", 1.0);

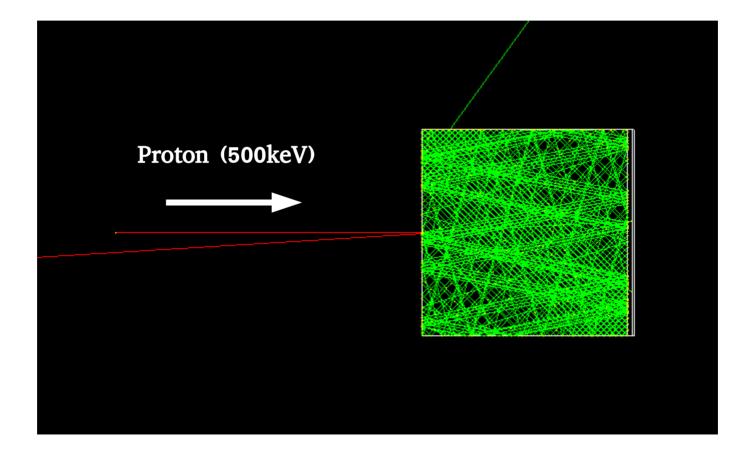
// Attach material properties table to each materials (CsI(Tl))
materialCsI->SetMaterialPropertiesTable(CsI_mt);
materialDoppedCsI->SetMaterialPropertiesTable(CsI_mt);

Shape CsI(Tl) crystal

• The box shape

• The tube shape

Shape CsI(Tl) crystal


• The orb (Complete sphere) shape

<pre>// Define Sphere for CsI(Tl) crystal G4Sphere *CsISphere = new G4Sphere("CsI_Sphere",</pre>					
	0,	// Minimum radius of the sphere			
	fCellSizeX,	// Maximum radius of the sphere			
	Θ,	<pre>// Starting phi (XY plane) angle of the sphere</pre>			
	2 * M_PI,	<pre>// Ending phi (XY plane) angle of the sphere</pre>			
	Θ,	<pre>// Starting theta angle of the sphere</pre>			
	M_PI);	<pre>// Ending theta angle of the sphere</pre>			

Definition & Placing CsI(Tl)

// Add logical volume and place it in the world
G4LogicalVolume *CsILV = new G4LogicalVolume(CsIBox, CsI, "CsI_LV");
new G4PVPlacement(nullptr, G4ThreeVector(), CsILV, "CsI_PV", worldLV, false, 0);

Example screenshot

Example photoelectron count

A QUEST FOR STUDENTS

- source_original: original source code using BGO crystal
- source modified: modified source code for adding CsI(Tl) material, but it is imcomplete

• QUEST: Complete the missing part of source modified and change the material of crystal to CsI(Tl)!

Homeworks

- Make the dimension of scintillation crystal to 30 cm x 30 cm x 30 cm
- Shoot 1GeV, 10GeV, 20GeV proton
- Calibrate your detector
- Obtain energy distributions measured with your detector
- Try to plot energy resolution and linearity plot
- Find light yield in # of p.e. / GeV

Appendix

How to compile BGOS

- Make a directory for building BGOS Example) mkdir building
- Perform the configuring for building Example) cmake /path/to/source
- Execute the compile process Example) make -j 2

How to merge output ROOT files

 using hadd utility Example) hadd [output file name] *root (in the directory of BGOS output)

• Warning: [output file name] should be absent in working directory!