DREAM Event Selection

Tom Coates, **Samuel Jones**, Fabrizio Salvatore, Iacopo Vivarelli

University of Sussex

November 7, 2018

University of Sussex

Event Selection

- Design two independent event selections based on:
 - Calorimeter deposits
 - Ancillary detectors
- Total events from a run: $N = N_e + N_h + N_\mu$
- Event yield k_i for a given particle given approximately by:

$$\begin{pmatrix} k_e \\ k_h \\ k_\mu \end{pmatrix} = \Lambda. \begin{pmatrix} N_e \\ N_h \\ N_\mu \end{pmatrix}; \qquad \Lambda = \begin{pmatrix} \epsilon_e & f_e^h & f_e^\mu \\ f_h^e & \epsilon_h & f_h^\mu \\ f_\mu^e & f_\mu^h & \epsilon_\mu \end{pmatrix}$$

- By measuring the elements of Λ we can relate the ks and Ns for ancillary selections
 - Measure ancillary selection efficiencies using tight calorimeter selections

Runs used in this study:

Composition	Run No.	Energy	Note	
Electron	12709	20	Veto In, Cal in Tw15, 0 mm Pb + 5mm PS	
Pion (secondary beam)	12508	80	-	
Muon	12686	40	No Veto, Cal in Tw31	
Hadron	12802	60	-	

Image: A math the second se

Beam position

- No selection applied in plots
- Muon beam broader than other compositions
- Δx approximately Gaussian
- \sim 5mm offset between x_1 and x_2
 - Calibrate position by mean position over a run

30

x2

Beam position

- No selection applied in plots
- Muon beam broader than other compositions
- Δy approximately Gaussian
- Offset is run dependent
 - Calibrate position by mean position over a run

Beam position

- Using calibrated x and y positions to plot beam profile
- Remove outliers from average beam position: $\mu \pm 3\sigma$
- Muon beam is fairly evenly distributed
 - Remove events that lie outside apparent limits
- TODO: Use to track $\Delta \theta$ from beam angle

・ロト ・日下・ ・ ヨト・

Ancillary Selection

- Beam outliers removed in plots
- Mean pedestal for run is subtracted
- Suggest the following selections:

	preshower	muon ADC
electron	> 20	< 8
muon	< 20	> 10
pion	< 20	< 5

・ロト ・日下・ ・ ヨト・

Calorimeter Selection

- Beam outliers removed
- Mean pedestal for run is subtracted
- Small response to muons almost no energy deposited in cherenkov
- Energy ratio & shower shape variables distorted for muons
- $N_{\text{cells}} > 25 = 0$ very pure for muons

Calorimeter Selection

- Apply tight selection to obtain high purity samples - to be used for ancillary efficiency estimate
- Divide electrons and hadrons using maximum energy and ratio

	max adc / E _{beam}	$N_{\rm cells} > 25$	R
electron	> 5	2 - 5	0.55 - 0.6
muon	(0,1)	0 - 1	-
pion	(2, 4)	> 4	0.0 - 0.4

adc counts / beam energy

・ロト ・日下・ ・ ヨト・

DREAM Event Selection

calorimeter selection + ancillary selection

 Compare distributions before and after applying muon adc cut

calorimeter selection + ancillary selection

 Compare distributions before and after applying preshower cut

Determination of Λ

- To measure ϵ_i , apply *i*th calorimeter selection to beam of composition *i* to obtain high purity sample
 - Then apply ancillary selection to measure the efficiency
 - The fake rate f_i^i is then the *j*th selection applied to the same sample

$$\Lambda = \begin{pmatrix} \epsilon_e & f_e^h & f_e^\mu \\ f_h^e & \epsilon_h & f_h^\mu \\ f_\mu^e & f_\mu^h & \epsilon_\mu \end{pmatrix}$$

Determination of Λ - results

$$\Lambda = \begin{pmatrix} 0.858 & 0.090 & 0.012 \\ 0.140 & 0.877 & 0.151 \\ 0.002 & 0.033 & 0.803 \end{pmatrix}$$

Determination of Λ - results (varying beams) 80 GeV pion beam \rightarrow 60 GeV hadron beam 40 GeV muon beam \rightarrow 60 GeV muon beam

$$\Lambda = \begin{pmatrix} 0.745 & 0.000 & 0.005 \\ 0.245 & 0.788 & 0.233 \\ 0.000 & 0.034 & 0.700 \end{pmatrix}$$

< □ > < □ > < □ > < □ > < □ >

Conclusions

- Designed a selection based on ancillary detectors to be finalised
- Determined efficiencies and fake rates from calorimeter selection
- TODOs:
 - Unstable when varying beam energies need to investigate
 - Estimate uncertainties on A matrix, beam compositions
 - Add tracking, $\Delta \phi$, deviation from beam angle
 - Implement the final selection in the merging code

Backup

メロト メポト メヨト メヨ