Jets and substructure in proton-proton collisions

Heavy-ion Jet Substructure Workshop, University of Bergen, 14 May 2019

Frédéric Dreyer

Physics at the high energy frontier

- LHC has been colliding protons at 13 TeV center-of-mass energy.
- Particle physics entering precision phase in study of EW symmetry breaking.
- Searching for new physics at the highest energy ever attained.

Run: 279685 Event: 690925592 2015-09-18 02:47:06 CEST

JET SUBSTRUCTURE AND MACHINE LEARNING

Jets as proxies for partons

Because of color confinement, quarks and gluons shower and hadronise immediately into collimated bunches of particles.

Hadronic jets can emerge from a number of processes

- scattering of partons inside colliding protons,
- hadronic decay of heavy particles,
- radiative gluon emission from partons, ...

Jets are prevalent at hadron colliders

Jet algorithms

A jet algorithm maps final state particle momenta to jet momenta.

This requires an external parameter, the jet radius R, specifying up to which angle separate partons are recombined into a single jet.

Basic idea of jet algorithm is to invert QCD branching process, clustering pairs which are closest in metric defined by the divergence structure of the theory.

$$d_{ij} = \min(k_{t,i}^{2p}, k_{t,j}^{2p}) \frac{\Delta_{ij}^2}{R^2}$$

Frédéric Dreyer

The jet radius parameter roughly controls the size of the jet

- Standard choice for small-*R* jets: R = 0.4 (ATLAS and CMS)
 - Used for QCD jets by most experimental analyses
 - Aim is to contain most of the decay of light quarks and gluons
- ► Typical choice for large-*R* jets: R = 0.8 (CMS) or R = 1 (ATLAS)
 - Used for boosted jets by most experimental analyses
 - Aim is to contain hadronic decay of decaying particle such as W, Z, top, H,...

- At LHC energies, EW-scale particles (W/Z/t...) are often produced with p_t ≫ m, leading to collimated decays.
- Hadronic decay products are thus often reconstructed into single jets.

[Figure by G. Soyez]

- At LHC energies, EW-scale particles (W/Z/t...) are often produced with p_t ≫ m, leading to collimated decays.
- Hadronic decay products are thus often reconstructed into single jets.

- Many techniques developed to identify hard structure of a jet based on radiation patterns.
- In principle, simplest way to identify these boosted objects is by looking at the mass of the jet.

- Many techniques developed to identify hard structure of a jet based on radiation patterns.
- In principle, simplest way to identify these boosted objects is by looking at the mass of the jet.
- But jet mass distribution is highly distorted by QCD radiation and pileup.

Two main approaches to identify boosted decays:

- 1. Manually constructing substructure observables that help distinguish between different origins of jets.
- 2. Apply machine learning models trained on large input images or observable basis.

Later in this talk: new approaches bridging some of the gap between these two techniques.

Jet grooming: (Recursive) Soft Drop / mMDT

- Mass peak can be partly reconstructed by removing unassociated soft wide-angle radiation (grooming).
- Recurse through clustering tree and remove soft branch if

$$\left[\frac{\min(p_{t,1}, p_{t,2})}{p_{t,1} + p_{t,2}} > z_{\mathsf{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}\right]$$

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]
[FD, Necib, Soyez, Thaler JHEP 1806 (2018) 093]

Jet grooming: (Recursive) Soft Drop / mMDT

- Mass peak can be partly reconstructed by removing unassociated soft wide-angle radiation (grooming).
- Recurse through clustering tree and remove soft branch if

$$\left[\frac{\min(p_{t,1}, p_{t,2})}{p_{t,1} + p_{t,2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}\right]$$

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]
[FD, Necib, Soyez, Thaler JHEP 1806 (2018) 093]

Jet grooming: common tools

Groomed jet mass

- The jet mass is one of the simplest observables.
- Provides a unique connection between measurements and theoretical calculations.
- Grooming mitigates some non-perturbative effects such as underlying event.
- Can be calculated to high precision by resumming large logarithms and matching to fixed order

Substructure observables

- Variety of observables have been constructed to probe the hard substructure of a jet (V/H/t decay lead to jets with multiple hard cores).
- Radiation patterns of colourless objects (W/Z/H) differs from quark or gluon jets.
- Efficient discriminators can be obtained e.g. from ratio of N-subjettiness or energy correlation functions.

[Thaler, Van Tilburg JHEP 1103 (2011) 015] [Larkoski, Salam, Thaler JHEP 1306 (2013) 108] [Larkoski, Moult, Neill JHEP 1412 (2014) 009]

Jet shapes: N-subjettiness

 Measures radiation around N axes that align with the dominant radiation directions

$$\tau_N^{(\beta)} = \frac{1}{p_t R^{\beta}} \sum_{i \in jet} p_{t,i} \min_{a_1,\dots,a_n} (\theta_{ia_1}^{\beta},\dots,\theta_{ia_N}^{\beta})$$

• Use $\tau_{21}^{(\beta)} = \tau_2^{(\beta)} / \tau_1^{(\beta)}$ for 2-pronged jets and $\tau_{32}^{(\beta)} = \tau_3^{(\beta)} / \tau_2^{(\beta)}$ for 3-pronged jets

Jet shapes: Energy correlation functions

Measures dispersion through N-point correlation functions, which are sensitive to (N – 1)-prong substructure

$$e_2^{(\beta)} = \sum_{1 \le i < j \le N} z_i z_j \theta_{ij}^{\beta}, \qquad e_3^{(\beta)} = \sum_{1 \le i < j < k \le N} z_i z_j z_k \theta_{ij}^{\beta} \theta_{ik}^{\beta} \theta_{jk}^{\beta}$$

- Advantage: doesn't need subjet/axes finding procedure
- Efficient 2-prong discriminants can be constructed through ratio

$$D_2^{(\beta)} = \frac{e_3^{(\beta)}}{(e_2^{(\beta)})^3}$$

While for 3-pronged jets

$$C_3^{(\beta)} = \frac{e_4^{(\beta)} e_2^{(\beta)}}{\left(e_3^{(\beta)}\right)^2}$$

Recent wave of results in applications of ML algorithms to jet physics.

Classification problems have been tackled through several orthogonal approaches

- Convolutional Neural Networks used on representation of jet as image
- Recurrent Neural Networks used on jet clustering tree.
- Linear combination or dense network applied to an observable basis (e.g. N-subjettiness ratios, energy flow polynomials)

Convolutational Neural Networks and Jet Images

- Project a jet onto a fixed n × n pixel image in rapidity-azimuth, where each pixel intensity corresponds to the momentum of particles in that cell.
- Can be used as input for classification methods used in computer vision, such as deep convolutional neural networks.

[de Oliveira, Kagan, Mackey, Nachman, Schwartzman JHEP 1607 (2016) 069]

Recurrent Neural Networks and clustering trees

- Train a recurrent/recursive neural network on kinematic information of successive declusterings of a jet.
- Techniques inspired from Natural Language Processing with powerful applications in handwriting and speech recognition.

Observable basis as low-dimensional representation

- Construct an observable basis that encodes the main physical properties of a jet (e.g. set of *N*-subjettiness ratios, energy flow polynomials, ...).
- Train a dense neural network or use linear methods to build a classifier from these inputs.

[Komiske, Metodiev, Thaler JHEP 1804 (2018) 013] [Datta, Larkoski JHEP 1706 (2017) 073]

Beyond classification problems

- Classification problems are one of the easiest application of ML, but by far not the only one!
- Many promising applications of ML methods for:
 - fast simulations using unsupervised generative models

[Paganini, de Oliveira, Nachman PRL 120 (2018) 042003]

- regression tasks such as pile-up subtraction [Komiske, Metodiev, Nachman, Schwartz JHEP 1712 (2017) 051]
- anomaly detection for new physics [Collins, Howe, Nachman PRL 121 (2018) 241803]
- distance metric of collider events

[Komiske, Metodiev, Thaler arXiv:1902.02346]

etc . . .

THE LUND PLANE (arXiv:1807.04758)

- Lund diagrams in the (ln zθ, ln θ) plane are a very useful way of representing emissions.
- Different kinematic regimes are clearly separated, used to illustrate branching phase space in parton shower Monte Carlo simulations and in perturbative QCD resummations.
- Soft-collinear emissions are emitted uniformly in the Lund plane

$$dw^2 \propto \alpha_s \frac{dz}{z} \frac{d\theta}{\theta}$$

Features such as mass, angle and momentum can easily be read from a Lund diagram.

Lund diagrams for substructure

Substructure algorithms can often also be interpreted as cuts in the Lund plane.

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]

Lund diagrams can provide a useful approach to study a range of jet-related questions

- First-principle calculations of Lund-plane variables.
- Constrain MC generators, in the perturbative and non-perturbative regions.
- Brings many soft-drop related observables into a single framework.
- Impact of medium interactions in heavy-ion collisions.
- Boosted object tagging using Machine Learning methods.

We will use this representation as a novel way to characterise radiation patterns in a jet, and study the application of recent ML tools to this picture.

To create a Lund plane representation of a jet, recluster a jet j with the Cambridge/Aachen algorithm then decluster the jet following the hardest branch.

- 1. Undo the last clustering step, defining two subjets j_1, j_2 ordered in p_t .
- 2. Save the kinematics of the current declustering $\Delta \equiv (y_1 - y_2)^2 + (\phi_1 - \phi_2)^2, \quad k_t \equiv p_{t2}\Delta,$ $m^2 \equiv (p_1 + p_2)^2, \quad z \equiv \frac{p_{t2}}{p_{t1} + p_{t2}}, \quad \psi \equiv \tan^{-1}\frac{y_2 - y_1}{\phi_2 - \phi_1}.$

3. Define $j = j_1$ and iterate until j is a single particle.

Lund plane representation

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

Lund representation of a jet

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

Lund representation of a jet

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.

Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.

Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.

Analytic study of the Lund plane

To leading order in perturbative QCD and for $\Delta \ll 1,$ one expects for a quark initiated jet

$$\rho \simeq \frac{\alpha_s(k_t)C_F}{\pi} \bar{z} \left(p_{gq}(\bar{z}) + p_{gq}(1-\bar{z}) \right), \quad \bar{z} = \frac{k_t}{p_{t,\text{jet}}\Delta}$$

- Lund plane can be calculated analytically.
- Calculation is systematically improvable.

Analytic study of the Lund plane

To leading order in perturbative QCD and for $\Delta \ll 1,$ one expects for a quark initiated jet

$$\rho \simeq \frac{\alpha_s(k_t)C_F}{\pi} \bar{z} \left(p_{gq}(\bar{z}) + p_{gq}(1-\bar{z}) \right), \quad \bar{z} = \frac{k_t}{p_{t,\text{iet}}\Delta}$$

- Lund plane can be calculated analytically.
- Calculation is systematically improvable.

Declustering other jet-algorithm sequences

- Choice of C/A algorithm to create clustering sequence related to physical properties and associated to higher-order perturbative structures
- anti- k_t or k_t algorithms result in double logarithmic enhancements

$$\bar{\rho}_2^{(\text{anti-}k_t)}(\Delta,\kappa) \simeq +8C_F C_A \ln^2 \frac{\Delta}{\kappa} \qquad \qquad \bar{\rho}_2^{(k_t)}(\Delta,\kappa) \simeq -4C_F^2 \ln^2 \frac{\Delta}{\kappa}$$

Declustering other jet-algorithm sequences

- Choice of C/A algorithm to create clustering sequence related to physical properties and associated to higher-order perturbative structures
- anti- k_t or k_t algorithms result in double logarithmic enhancements

Declustering other jet-algorithm sequences

Lund images for QCD and W jets

Hard splittings clearly visible, along the diagonal line with jet mass $m = m_W$.

Discriminating features in the Lund plane

- Can identify discriminating features by considering log ratio of averaged images.
- W peak is clearly visible but after cuts, depletion of emissions at relatively large angles remains distinctive signature.

Secondary Lund plane

- Secondary Lund planes are ignored: some information is therefore lost, but still achieves good performance.
- This limitation can be overcome by extending the methods we will discuss to include secondary planes as inputs.

APPLICATION TO BOOSTED W TAGGING

We will now investigate the potential of the Lund plane for boosted-object identification.

Two different approaches:

- A log-likelihood function constructed from a leading emission and non-leading emissions in the primary plane.
- Use the Lund plane as input for a variety of Machine Learning methods.

As a concrete example, we will take dijet and WW events, looking at CA jets with $p_t > 2$ TeV.

Log-likelihood approach takes two inputs:

- First one obtained from the "leading" emission.
- The second one which brings sensitivity to non-leading emissions.

Leading emission is determined to be the first emission in the Lund declustering sequence that satisfies z > 0.025 (~ mMDT tagger)

Define a \mathcal{L}_ℓ log likelihood function

$$\mathcal{L}_{\ell}(m,z) = \ln\left(\frac{1}{N_S}\frac{dN_S}{dmdz} \middle| \frac{1}{N_B}\frac{dN_B}{dmdz} \right)$$

where the ratio of $\frac{dN_{S/B}}{dmdz}$ is the differential distribution in *m* and *z* of the leading emission for signal sample (background) with $N_S(N_B)$ jets.

Non-leading $(n\ell)$ emissions within the primary Lund plane are incorporated using a function

$$\mathcal{L}_{n\ell}(\Delta, k_t; \Delta^{(\ell)}) = \ln\left(\rho_S^{(n\ell)} / \rho_B^{(n\ell)}\right)$$

where $\rho^{(n\ell)}$ is determined just over the non-leading emissions,

$$\rho^{(n\ell)}(\Delta, k_t; \Delta^{(\ell)}) = \frac{dn_{\text{emission}}^{(n\ell)}}{d\ln k_t \, d\ln 1/\Delta \, d\Delta^{(\ell)}} \left/ \frac{dN_{\text{jet}}}{d\Delta^{(\ell)}} \right|$$

as a function of the angle $\Delta^{(\ell)}$ of the leading emission.

Log-likelihood use of Lund Plane: non-leading emissions

 $\mathcal{L}_{n\ell}$ log-likelihood function in a specific bin.

Log-likelihood use of Lund Plane: full discriminator

Overall log-likelihood signal-background discriminator for a given jet is then given by

$$\mathcal{L}_{\mathsf{tot}} = \mathcal{L}_{\ell}(m^{(\ell)}, z^{(\ell)}) + \sum_{i \neq \ell} \mathcal{L}_{n\ell}(\Delta^{(i)}, k_t^{(i)}; \Delta^{(\ell)}) + \mathcal{N}(\Delta^{(\ell)})$$

where
$$\mathcal{N} = -\int d\ln \Delta d\ln k_t \left(\rho_S^{(\ell)} - \rho_B^{(\ell)}\right).$$

Each subjet i in the sum brings information about whether it is in a more background-like or signal-like part of the Lund plane.

Optimal discriminator if:

- Leading emission correctly associated with W's two-prong structure.
- Non-leading emissions are independent from each other.
- Emission patterns for those emissions depend only on $\Delta^{(\ell)}$.

- Compare the LL approach in specific mass-bin with equivalent results from the Les Houches 2017 report (arXiv:1803.07977).
- Substantial improvement over best-performing substructure observable.

A variety of ML methods can be applied to the Lund plane in order to construct efficient taggers.

We will investigate three approaches:

- Convolutional Neural Networks (CNN) applied on 2D Lund images.
- Deep Neural Networks (DNN) applied on the sequence of declusterings.
- Long Short-Term Memory (LSTM) networks applied on the sequence of declusterings.

Recurrent networks with a Lund plane

- Jets generally associated with a clustering trees, where each node contains similar type of information.
- Particularly well-adapted for recurrent networks, which loop over inputs and use the same weights.
- LSTMs are a widely used variant designed to have memory over longer separations.
- For each declustering node, we consider the inputs

 $\left\{ \ln(R/\Delta R_{12}), \ln(k_t/\text{GeV}) \right\}$

Inputs are IRC safe as long as there is a cutoff in transverse momentum.

Figure from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs for jet tagging

- LSTM network substantially improves on results obtained with other methods.
- Large gain in performance, particularly at higher efficiencies.

Sensitivity to non-perturbative effects

- Performance compared to resilience to MPI and hadronisation corrections.
- Vary cut on k_t, which reduces sensitivity to the non-perturbative region. performance v. resilience [full mass information]

- Lund-likelihood performs well even at high resilience.
- ML approach reaches very good performance but is not particularly resilient to NP effects.

REINFORCED JET GROOMING (arXiv:1903.09644)

Grooming a jet tree

Cast jet as clustering tree where state of each node T⁽ⁱ⁾ is a tuple with kinematic information on splitting

$$s_t = \left\{ z, \Delta_{ab}, \psi, m, k_t \right\}$$

Grooming algorithm defined as a function π_g observing a state and returning an action {0, 1} on the removal of the softer branch, e.g.

$$\pi_{\text{RSD}}(s_t) = \begin{cases} 0 & \text{if } z > z_{\text{cut}} \left(\frac{\Delta_{ab}}{R_0}\right)^{\beta} \\ 1 & \text{else} \end{cases}$$

Reinforcement learning with Deep-Q-Networks

Reinforcement learning are usually built from two elements:

- an agent deciding which actions to take in order to maximize reward
- an environment, observed by the agent and affected by the action

Deep Q-Network is a RL algorithm which uses a table of Q-values Q(s, a), determining the next action as the one that maximizes Q.

A neural network is used to approximate the optimal action-value function

$$Q^*(s,a) = \max_{\pi} \mathbb{E}[r_t + \gamma r_{t+1} + \dots | s_t = s, a_t = a, \pi]$$

[Mnih et al, Nature 2015]

Frédéric Dreyer

To find optimal grooming policy π_g , define an environment and a reward function so that problem can be solved with RL.

- Initialize list of all trees used for training.
- Each episode starts by randomly selecting a tree and adding its root to a priority queue (ordered in Δ_{ab}).
- Each step removes first node from priority queue, then takes action on removal of soft branch based on state s_t of node.
- After action, update kinematics of parent nodes, add current children to priority queue, and evaluate reward function.
- Episode terminates once priority queue is empty.

- Key ingredient for optimization of grooming policy is reward function used at each training step.
- We construct a reward with two components
 - First piece R_M evaluated on the full jet tree, comparing the jet mass to a target value.
 - Second component R_{SD} looks at kinematics of current node.
- Total reward is then given by

$$R(m, a_t, \Delta, z) = R_M(m) + \frac{1}{N_{\text{SD}}} R_{\text{SD}}(a_t, \Delta, z)$$

where mass reward is defined using a Cauchy distribution

$$R_M(m) = \frac{\Gamma^2}{\pi(|m - m_{\text{target}}|^2 + \Gamma^2)}$$

Defining the reward function

- To provide baseline behaviour for the groomer, we include a "Soft-Drop" reward R_{SD} evaluated on the current node
- Calculated on the current node state, gives positive reward for removal of wide-angle soft radiation and for keeping hard-collinear emissions.

 $R_{SD}(a_t, \Delta, z) = a_t \min(1, e^{-\alpha_1 \ln(1/\Delta) + \beta_1 \ln(z_1/z)})$ $+ (1 - a_t) \max(0, 1 - e^{-\alpha_2 \ln(1/\Delta) + \beta_2 \ln(z_2/z)})$

Implementation and multi-level training

- Train RL agent with multi-level approach using both signal and bkg into account. Sample consists of 500k W/QCD or Top/QCD Pythia 8 jets.
- At the beginning of each episode, randomly select a signal or background jet with probability 1 - p_{bkg}.
- In the background case, mass reward function is changed to

Groomed jet mass spectrum

- To test the grooming algorithm derived from the DQN agent, we apply our groomer to three test samples: QCD, W and Top jets.
- Improvement in jet mass resolution compared to RSD.
- Algorithm performs well on data beyond its training range.

code available at github.com/JetsGame/GroomRL

Groomed jet mass spectrum

- To test the grooming algorithm derived from the DQN agent, we apply our groomer to three test samples: QCD, W and Top jets.
- Improvement in jet mass resolution compared to RSD.
- Algorithm performs well on data beyond its training range.

Frédéric Dreyer

Robustness to non-perturbative effects

- Resilience to hadronisation and underlying event corrections is a key feature of modern grooming algorithms
- Strategy derived from reinforcement learning shows similar behaviour to heuristic method
- No parton or hadron-level data was used in the training!

Frédéric Dreyer

CONCLUSIONS

Conclusions: the view from pp physics

- Jet substructure is a very active subfield providing a wide range of tools that can be readily applied in heavy ion physics.
- Cross-talk with machine learning community has lead to many new advances and insights.
- Many yet to come, e.g. in tackling more complicated regression tasks or unsupervised learning approaches.
- Discussed a way to study and exploit radiation patterns in a jet using the Lund plane.
- Introduced a framework for promising application of reinforcement learning to jet grooming

 \Rightarrow easily extendable to other choices of reward function.