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Physics at the high energy frontier

» LHC has been colliding protons
at 13 TeV center-of-mass energy.

> Particle physics entering
precision phase in study of EW
symmetry breaking.

» Searching for new physics at the
highest energy ever attained.
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JET SUBSTRUCTURE AND
MACHINE LEARNING



Jets as proxies for partons

- 2
Because of color confinement, quarks and gluons shower \*%
and hadronise immediately into collimated bunches of

particles.
Hadronic jets can emerge from a number of processes @
. L - o°
> scattering of partons inside colliding protons, &“&9‘6‘\&\\\ .
. . & &o‘{\ \\ .
> hadronic decay of heavy particles, & N\ 2x
20 <
> radiative gluon emission from partons, ... \.\%\ x

I 2!l ATLAS and CMS papers [Figures by G. Salam]

those using jets

U0 GH-JEIASNI oK PaIaIoD BIEC

Jets are prevalent

T

N papers / month

|
at hadron colliders 1: HI|I IIJ.
|l

2010 2011 2012 2013 2014 year
Frédéric Dreyer 3/50




Jet algorithms

A jet algorithm maps final state particle momenta to jet momenta.

{rit = {jx}
N—— N——
particles jets

This requires an external parameter, the jet radius R, specifying up to which
angle separate partons are recombined into a single jet.

Basic idea of jet algorithm is to invert QCD branching process, clustering
pairs which are closest in metric defined by the divergence structure of the
theory.

2
o . 2 ,2p /\,'j
d,] = mm(kt,i,kt/j)ﬁ
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Choice of jet radius

The jet radius parameter roughly controls the size of the jet

» Standard choice for small-R jets: R = 0.4 (ATLAS and CMS)
> Used for QCD jets by most experimental analyses
> Aim is to contain most of the decay of light quarks and gluons
> Typical choice for large-R jets: R = 0.8 (CMS) or R = 1 (ATLAS)

> Used for boosted jets by most experimental analyses

> Aim is to contain hadronic decay of decaying particle such as W, Z, top,
H, ...
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Boosted objects at the LHC

> At LHC energies, EW-scale particles (W/Z/t...) are often produced
with p; > m, leading to collimated decays.

> Hadronic decay products are thus often reconstructed into single jets.

pr S m p: > m

[Figure by G. Soyez]
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Boosted objects at the LHC

> At LHC energies, EW-scale particles (W/Z/t...) are often produced
with p; > m, leading to collimated decays.

> Hadronic decay products are thus often reconstructed into single jets.

pr S m p: > m

2 jets 1 jet

quark
(or gluon)
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Boosted objects at the LHC

> Many techniques developed to identify hard structure of a jet based on
radiation patterns.

> In principle, simplest way to identify these boosted objects is by looking
at the mass of the jet.
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Boosted objects at the LHC

> Many techniques developed to identify hard structure of a jet based on
radiation patterns.

> In principle, simplest way to identify these boosted objects is by looking
at the mass of the jet.

> But jet mass distribution is highly distorted by QCD radiation and
pileup.

T T
Hard partons
Hadrons with UE =

pp->WW, 13 TeV, Pythia 8 (4C)
R=1, py > 500 GeV, |y;|<5

dc/dmj [nb/GeV]

70 80 90 100 110

m; [GeV]
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Identifying boosted objects

Two main approaches to identify boosted decays:

1. Manually constructing substructure observables that help distinguish
between different origins of jets.

2. Apply machine learning models trained on large input images or
observable basis.

Later in this talk: new approaches bridging some of the gap between these
two techniques.
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Jet grooming: (Recursive) Soft Drop / mMDT

T T
Hard partons
Hadrons with UE =

> Mass peak can be partly
reconstructed by removing
unassociated soft wide-angle
radiation (grooming).

pp->WW, 13 TeV, Pythia 8 (4C)
R=1, py > 500 GeV, |yj|<5

do/dmj [nb/GeV]

> Recurse through clustering tree
and remove soft branch if

min(p;,1, pe2) . /) -
pt,l + pt,2 70 80 90 100 110
mj [GeV]

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]
[FD, Necib, Soyez, Thaler JHEP 1806 (2018) 093]
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Jet grooming: (Recursive) Soft Drop / mMDT

T T
Hard partons

>
Mass peak can be partly R
reconstructed by removing Recursive Soft Drop
i . pp->WW, 13 TeV, Pythia 8 (4C)
unassociated soft wide-angle R=1, py > 500 GeV, |yj| <5
radiation (grooming).

RSD: N=e, 70,=0.05, B=1

do/dmj [nb/GeV]

> Recurse through clustering tree
and remove soft branch if

min(py,1, pt,2) .
pi1+ Pio 70 80 %0 100 110
mj [GeV]

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]
[FD, Necib, Soyez, Thaler JHEP 1806 (2018) 093]
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Jet grooming: common tools

Trimming

—— s s SoftDrop
emall n “"F“
—_—
Recluster Remove if fails
with C/A soft drop

D R
Pruning
Mdu Continue until
branchmg passes Return jet
_—
—
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Groomed jet mass

> The jet mass is one of the simplest observables.

> Provides a unique connection between measurements and theoretical
calculations.

> Grooming mitigates some non-perturbative effects such as underlying
event.

> Can be calculated to high precision by resumming large logarithms and
matching to fixed order

k
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Substructure observables

65 GeV < m <95 GeV

0.08,

. —W jets
> Variety of observables have been 007
constructed to probe the hard g 0%
. 2 0.05]
substructure of a jet (V /H /t decay 8 00s
lead to jets with multiple hard cores). £ 008
& 0.02]
> Radiation patterns of colourless 001
objects (W /Z/H) differs from quark or K PR VR T
gluon jets. 030 =
Z Boson vs. QCD (Pythia 8)
> Efficient discriminators can be obtained ~ ** G 0GRV R0
. . . £ 020
e.g. from ratio of N-subjettiness or z DY, p=2
. . E K QCD Jets
energy correlation functions. e e
= 0.10
[Thaler, Van Tilburg JHEP 1103 (2011) 015] N
[Larkoski, Salam, Thaler JHEP 1306 (2013) 108] UL
[Larkoski, Moult, Neill JHEP 1412 (2014) 009] -
(] 10 20 30 40 50 60 70
08
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Jet shapes: N-subjettiness

> Measures radiation around N axes that align with the dominant
radiation directions

(ﬁ)
Z Pt,i ulr/ru/nn(Qm P ZaN)
i€jet
> Use T(ﬁ) (ﬁ)/T(ﬁ) for 2-pronged jets and 7(3? = T3 /T(ﬁ) for

3- pronged jets

Boosted QCD Jet, R = 0.6 Boosted W Jet, R = 0.6
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Jet shapes: Energy correlation functions

> Measures dispersion through N-point correlation functions, which are
sensitive to (N — 1)-prong substructure

B _ . .oP B _ e B B AP
e, = Z zlzJGij, ey = Z zlz]szijGiijk
1<i<j<N 1<i<j<k<N

> Advantage: doesn’t need subjet/axes finding procedure
> Efficient 2-prong discriminants can be constructed through ratio

®__ %
DY =
2 ()3
(e;")
> While for 3-pronged jets
®) (B)
cB b &
3 )2
(33 )
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Applying Machine Learning in Jet Physics

Recent wave of results in applications of ML algorithms to jet physics.

Classification problems have been tackled through several orthogonal
approaches

» Convolutional Neural Networks used on representation of jet as image

> Recurrent Neural Networks used on jet clustering tree.

> Linear combination or dense network applied to an observable basis
(e.g. N-subjettiness ratios, energy flow polynomials)

Frédéric Dreyer 15/50



Convolutational Neural Networks and Jet Images

> Project a jet onto a fixed n X n pixel image in rapidity-azimuth, where
each pixel intensity corresponds to the momentum of particles in that
cell.

> Can be used as input for classification methods used in computer
vision, such as deep convolutional neural networks.

Convolved
QCD. Jet image, p; > 2TeV Convolutions Feature Layers

ﬁ.‘ - I'q 1071

Max-Pooling

10 W= WZevent

Repeat
[Cogan, Kagan, Strauss, Schwartzman JHEP 1502 (2015) 118]

[de Oliveira, Kagan, Mackey, Nachman, Schwartzman JHEP 1607 (2016) 069]
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Recurrent Neural Networks and clustering trees

» Train a recurrent/recursive neural network on kinematic information of
successive declusterings of a jet.

> Techniques inspired from Natural Language Processing with powerful
applications in handwriting and speech recognition.

Event embedding Classifier

v(ty) v(ta) v(tar)

’ ' : C )

vent (o)

By (t1) B (t2) B (tar)

\1/
\

7N 7N 7N
AN N VAN L
2 [Louppe, Cho, Becot, Cranmer JHEP 1901 (2019) 057]

[Egan, Fedorko, Lister, Pearkes, Gay 1711.09059]
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Observable basis as low-dimensional representation

> Construct an observable basis that encodes the main physical
properties of a jet (e.g. set of N-subjettiness ratios, energy flow
polynomials, ...).

> Train a dense neural network or use linear methods to build a classifier
from these inputs.

Degree Connected Multigraphs
d=0 .

|

e
T 10%
~
o
g
d=2 ]
=
2 10
8 EFPs: W vs. QCD
d=3 /I\ e Pythia 8.226, \/5 = 13 TeV
/N 2 R =08, pr € [500,550] GeV
S o0d EPE=0s

ViV XoFN E
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AN 0.0 02 0.4 0.6 0.8 10
W Jet Efficiency

[Komiske, Metodiev, Thaler JHEP 1804 (2018) 013]
[Datta, Larkoski JHEP 1706 (2017) 073]
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Beyond classification problems

> Classification problems are one of the easiest application of ML, but by
far not the only one!

> Many promising applications of ML methods for:

> fast simulations using unsupervised generative models
[Paganini, de Oliveira, Nachman PRL 120 (2018) 042003]

> regression tasks such as pile-up subtraction
[Komiske, Metodiev, Nachman, Schwartz JHEP 1712 (2017) 051]

> anomaly detection for new physics
[Collins, Howe, Nachman PRL 121 (2018) 241803]

> distance metric of collider events
[Komiske, Metodiev, Thaler arXiv:1902.02346]

> etc...
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THE LUND PLANE
(arXiv:1807.04758)



Lund diagrams

» Lund diagrams in the (Inz6,1n 0)
plane are a very useful way of
representing emissions.

Primary Lund-plane regions

> Different kinematic regimes are
clearly separated, used to illustrate
branching phase space in parton
shower Monte Carlo simulations and
in perturbative QCD resummations.

In(kt/GeV)

(v abue)) ys|

> Soft-collinear emissions are emitted
uniformly in the Lund plane N
dz do In(R/A)
dw? oc qg— —
z

0
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Lund diagrams

Features such as mass, angle and momentum can easily be read from a
Lund diagram.

log( z 6)
A

Emission with ]_ —_
mom fraction z

z

2
v
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Lund diagrams for substructure

Substructure algorithms can often also be interpreted as cuts in the Lund
plane.

P<Z oy P far Pruning

In z6

<&
@,
“

prune

N
Y

(‘(/,6\

/0/

In 1/6
[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
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Studying jets in the Lund plane

Lund diagrams can provide a useful approach to study a range of jet-related
questions

> First-principle calculations of Lund-plane variables.

> Constrain MC generators, in the perturbative and non-perturbative
regions.

> Brings many soft-drop related observables into a single framework.
> Impact of medium interactions in heavy-ion collisions.

> Boosted object tagging using Machine Learning methods.

We will use this representation as a novel way to characterise radiation
patterns in a jet, and study the application of recent ML tools to this picture.
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Lund plane representation

To create a Lund plane representation of a jet, recluster a jet j with the
Cambridge/Aachen algorithm then decluster the jet following the hardest
branch.

1. Undo the last clustering step, defining two subjets j1, j»
ordered in p;.

2. Save the kinematics of the current declustering
A= (y1—y2)* + (1 - ¢2)®, ki = prA,

m? = + 2, zz—ptz , =t _1—y2_y1.
(1 +p2) pPr+pe ¥ =tan $2—P1

3. Define j = j; and iterate until j is a single particle.
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Lund plane representation

(b) (b)

= (a) (a) /t')
= (c)
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Lund representation of a jet

> Each jet has an image
associated with its primary
declustering.

> For a C/A jet, Lund plane is filled
left to right as we progress
through declusterings of hardest
branch.

> Additional information such as
azimuthal angle ¢ can be
attached to each point.

In(k¢/GeV)

-2

Lund image for a 2 TeV QCD jet

0 1 2 3 5 6 7 8

4
In(R/A)

/S
N
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Lund representation of a jet
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Vs =14TeV, p;>2 TeV
Pythia8.230(Monash13)

In(ke/GeV)

0.0 05 1.0 1.5 2.0 25 3.0 35 4.0 45 50
In(R/B)

[ O

00 01 02 03 04 05 06 0.7 08 09
p(B, ke)

Frédéric Dreyer

p(AR, fixed ki)

p(fixed AR, ki)

0.5

0.3

0.2
0.15

0.1 [

[[ = Pythia8.230 (Monash13) N 7

= Herwig7.1.1 (default) J

----- Sherpa2.2.4 (default)
L ! L
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Jets as Lund images

In(ke/GeV)

Average over declusterings of hardest branch for 2 TeV QCD jets.

; QCD jets, averaged primary Lund plane

VE=14TeV, p>2 TeV P : ) :
6 pythia.230(Monash13) 8 Primary Lund-plane regions
5 <

£
4
3
2
1
0 -
Non-perturbative
-1 - B
-2
0.0 05 1.0 15 20 25 3.0 35 40 45 50
In(R/A) In(R/2)

00 01 02 03 04 05 06 0.7 08 09

Non-perturbative region clearly separated from perturbative one.

26/50
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.

Primary Lund-plane regions

In(k/GeV)

In(k¢/GeV)

00 05 1.0 1.5 20 25 3.0 3.5 4.0 45 5.0 |n(R/A)
In(R/D)

[ O

00 01 02 03 04 05 06 0.7 08 09

Non-perturbative region clearly separated from perturbative one.
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Analytic study of the Lund plane

To leading order in perturbative QCD and for A <« 1, one expects for a
quark initiated jet

p= aS(I;;)CFZ (Pge(@) +pge(1-2)), Z=

LO analytic

1

> Lund plane can be calculated
analytically.

> Calculation is systematically
improvable.

0.001

In 1A,
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Analytic study of the Lund plane

To leading order in perturbative QCD and for A <« 1, one expects for a
quark initiated jet

_as(ki)Cr _ _ . -k
p= - z (qu(z) +pgq(l Z)) , Z= Dre

LO analytic / MC

> Lund plane can be calculated
analytically.

> Calculation is systematically
improvable.

05

03
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Declustering other jet-algorithm sequences

> Choice of C/A algorithm to create clustering sequence related to
physical properties and associated to higher-order perturbative

structures

> anti-k; or k; algorithms result in double logarithmic enhancements

) A
p_(zantl kz)(A, k) = +8Cp Cy In? -

1

anti-k, C/A 3
)y’)"; X )y"% =.
—q - q

Frédéric Dreyer

ﬁ(zk')(A, K) = —4C2 In? %
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Declustering other jet-algorithm sequences

> Choice of C/A algorithm to create clustering sequence related to
physical properties and associated to higher-order perturbative
structures

> anti-k; or k; algorithms result in double logarithmic enhancements

Lund plane at O(a2) - anti-k; Lund plane at O(a2) - k¢ Lund plane at O(a2) - C/A
1200 T T T T T S N N B B B a— 800 T T T T
anti-k, —— 800 ke e A — |
1000 R pentk) 2 600 - h |2 O ~(cm
N 2 400 |- 22 a 600 - 2,rc 4
800 - T 200+ 1 500 F . .
& 600 - 4& _0fF & 400 - 2 .
| | 200 Py 1 300+ ™~ 1
400 400 | I . D
L | 200 + ~3 .
200 i -600 L ~ |
-800 |, 4 100
250 —t—t—t— -1000 —t—+—+—+— 200 —f—F+—+—+
~, 200 | 2<log(1/8)<2.54 «, goo L 2<log(/p)<25 | o 2<log(1/8)<2.5 |
o 150 1 L 4 4
< 100 b . ‘f“iggf 1 <100 J
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Declustering other jet-algorithm sequ

recluster alg: anti-k/(C/A) ratio

Vs =14TeV, p,>2 TeV
Pythia8.230(Monash13)

In(ky/GeV)

0.0 05 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0

In(1/4)
01 02 0.5 1 2 5 10

Panti -k (B, Ke)/pcia(B, Ke)
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In(k¢/GeV)

recluster alg: k¢/(C/A) ratio
|
Vs =14TeV, p>2 TeV

1 Pythia8.230(Monash13)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0

In(1/A)
0.1 0.2 0.5 1 2 5 10
Pi(B, kedlpcja(B, ke)
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Lund images for QCD and W jets

> Hard splittings clearly visible, along the diagonal line with jet mass
m = mw.

QCD jets, averaged primary Lund plane ; W jets, averaged primary Lund plane

Vs =14TeV, p;>2TeV
Pythia8.230(Monash13)

Vs =14TeV, p;>2 TeV
Pythia8.230(Monash13)

In(ke/GeV)
In(ks/GeV)

0.0 05 1.0 1.5 2.0 25 3.0 3.5 4.0 45 5.0 0.0 05 1.0 1.5 2.0 2.5 3.0 35 4.0 45 50
In(R/A) In(R/A)

R

00 01 02 03 04 05 06 07 08 09 00 01 02 03 04 05 06 07 08 09
pb, ke) Ps(B, ke)
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Discriminating features in the Lund plane

» Can identify discriminating features by considering log ratio of

averaged images.

> W peak is clearly visible — but after cuts, depletion of emissions at
relatively large angles remains distinctive signature.

Lund image (In p;), In(W/QCD), p; > 2TeV

8
"
6 no cuts 2
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Secondary Lund plane

> Secondary Lund planes are ignored: some information is therefore
lost, but still achieves good performance.

> This limitation can be overcome by extending the methods we will
discuss to include secondary planes as inputs.

log(z 8)

log(1/6)

log(1/64,)
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APPLICATION TO BOOSTED W TAGGING



Tagging jets in the Lund Plane

We will now investigate the potential of the Lund plane for boosted-object
identification.

Two different approaches:

> A log-likelihood function constructed from a leading emission and
non-leading emissions in the primary plane.

> Use the Lund plane as input for a variety of Machine Learning methods.

As a concrete example, we will take dijet and WW events, looking at CA jets
with p; > 2 TeV.
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Log-likelihood use of Lund Plane: leading emission

Log-likelihood approach takes two inputs:

> First one obtained from the “leading” emission.
> The second one which brings sensitivity to non-leading emissions.

Leading emission is determined to be the first emission in the Lund
declustering sequence that satisfies z > 0.025 (~ mMDT tagger)

Define a L, log likelihood function

Li(m,z) =1n (

1 dNg 1 dNpg
Ns dmdz | Ng dmdz

where the ratio of éﬁgs is the differential distribution in m and z of the

leading emission for signal sample (background) with Ns(N3p) jets.
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Log-likelihood use of Lund Plane: non-leading emissions

Non-leading (n{) emissions within the primary Lund plane are incorporated
using a function

T

where p"?) is determined just over the non-leading emissions,

(n¢)
p(flf)(A kt.A(f)) — dne:ﬂssion /dNiet
Y dlnk; dIn1/AdA© | dAO

as a function of the angle A(¥) of the leading emission.
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Log-likelihood use of Lund Plane: non-leading emissions

L, log-likelihood function in a specific bin.

W/QCD jets, 1.5 < In(R/AY) < 2

Vs =14TeV, p;>2 TeV
Pythia8.230(Monash13)

In(k:/GeV)

-2 7 T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 45 50

In(R/B)
0.2 05 07 1 15 2 5

ratio p™(A, kIS (D, kr)
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Log-likelihood use of Lund Plane: full discriminator

Overall log-likelihood signal-background discriminator for a given jet is then
given by

Lot = Lo(m®,20) + 3" L,0(AD, k7 A0) + N(AY)

i+l

where N = — [dInAdInk, (p(sf) pg)).

Each subjet i in the sum brings information about whether it is in a more
background-like or signal-like part of the Lund plane.

Optimal discriminator if:

> Leading emission correctly associated with W’s two-prong structure.
> Non-leading emissions are independent from each other.
» Emission patterns for those emissions depend only on A(©),
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Tagging with LL method

QCD rejection v. W efficiency
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https://arxiv.org/abs/1803.07977

ML applied to the Lund plane

A variety of ML methods can be applied to the Lund plane in order to
construct efficient taggers.

We will investigate three approaches:

» Convolutional Neural Networks (CNN) applied on 2D Lund images.

> Deep Neural Networks (DNN) applied on the sequence of
declusterings.

» Long Short-Term Memory (LSTM) networks applied on the sequence of
declusterings.
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Recurrent networks with a Lund plane

> Jets generally associated with a clustering trees, where
each node contains similar type of information.

> Particularly well-adapted for recurrent networks, which
loop over inputs and use the same weights. @

> LSTMs are a widely used variant designed to have [T j
memory over longer separations. A

> For each declustering node, we consider the inputs é
{ln(R/ARlz), ln(kt/GeV)}

> Inputs are IRC safe as long as there is a cutoff in
transverse momentum.

Figure from
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTMs for jet tagging

» LSTM network substantially
improves on results obtained
with other methods.

> Large gain in performance,
particularly at higher
efficiencies.
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Sensitivity to non-perturbative effects

> Performance compared to resilience to MPI and hadronisation corrections.

> Vary cut on k;, which reduces sensitivity to the non-perturbative region.
performance v. resilience [full mass information]

Ae=¢—¢€

T T T T
<__'7no In kq cut LH 201 7+-BDT N
LH 2017+BDT optimal
In ke cut = -1 plcosel+gpT v
Lund+likelihood —e—

Lund-LSTM —a— ]

20 -

(c.f. arXiv:1803.07977)

’

(ey=1(e+e)

» Lund-likelihood performs
well even at high resilience.
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https://arxiv.org/abs/1803.07977

REINFORCED JET GROOMING
(arXiv:1903.09644)



Grooming a jet tree

> Cast jet as clustering tree where state of each node 7 is a tuple with
kinematic information on splitting
St = {Zr Aabr l;b/ m, kt}

> Grooming algorithm defined as a function 7, observing a state and
returning an action {0, 1} on the removal of the softer branch, e.g.

0 if z> zcut(?{é’)ﬁ

1 else

TRsD(st) = {
T 709

7

Grooming
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Reinforcement learning with Deep-Q-Networks

Reinforcement learning are usually built from two elements:

> an agent deciding which actions to take in order to maximize reward
> an environment, observed by the agent and affected by the action

.
‘ " N
Deep Q-Network is a RL algorithm & E ,D
which uses a table of Q-values g~ _ .7 1 i @
Q(s, a), determining the next ac- .DD © B 2 *
tion as the one that maximizes Q. ‘DD ‘ /8 {
] E| \=

[~ O]

A neural network is used to approximate the optimal action-value function

Q*(s,a) =maxE[r; + yrip1 + ... |5t =s,ar = a,n]
T
[Mnih et al, Nature 2015]
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https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

Defining a grooming environment

To find optimal grooming policy 7o, define an environment and a reward
function so that problem can be solved with RL.

> Initialize list of all trees used for training.

> Each episode starts by randomly selecting a tree and adding its root to
a priority queue (ordered in Azp).

> Each step removes first node from priority queue, then takes action on
removal of soft branch based on state s; of node.

> After action, update kinematics of parent nodes, add current children to
priority queue, and evaluate reward function.

> Episode terminates once priority queue is empty.
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Defining the reward function

> Key ingredient for optimization of grooming policy is reward function
used at each training step.
> We construct a reward with two components
> First piece Ry, evaluated on the full jet tree, comparing the jet mass to a

target value.
> Second component Rgp looks at kinematics of current node.

> Total reward is then given by

1
R(m,as, A, z) = Rpy(m) + ——Rsp(at, A, z)
Nsp

» where mass reward is defined using a Cauchy distribution

1"2
R m)= ——-
m(m) n(|m — mtarget|2 +12)
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Defining the reward function

> To provide baseline behaviour for the groomer, we include a
“Soft-Drop” reward Rgp evaluated on the current node

> Calculated on the current node state, gives positive reward for removal
of wide-angle soft radiation and for keeping hard-collinear emissions.

RSD(afr A, Z) = 2; min (1’ e 1 In(1/A)+pB1 ln(zl/z))

+ (1 = at)max (0’ 1—e¢® In(1/A)+B2 ln(zz/z))

Rgp for ag=1 Rgp for a,=0

6.B,=033,Inz,=-35
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Implementation and multi-level training

> Train RL agent with multi-level approach using both signal and bkg into
account. Sample consists of 500k W/QCD or Top/QCD Pythia 8 jets.

> At the beginning of each episode, randomly select a signal or
background jet with probability 1 — ppg.

> In the background case, mass reward function is changed to

Ry, (m):%exp(—ﬂ).

Nk
YTy

25 50 75 100 10° 107 107 LSTM 002 oos 01 10 50 100 200 1 3 5 10 rue
mass [GeV] learning rate a:mzeczu number of units number of layers u ub\eDON dul ing n netwark
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Groomed jet mass spectrum

> To test the grooming algorithm derived from the DQN agent, we apply
our groomer to three test samples: QCD, W and Top jets.

» Improvement in jet mass resolution compared to RSD.
> Algorithm performs well on data beyond its training range.

QCD Top

plain plain

plain
RSD RSD RSD
GroomRL-W GroomRL-W GroomRL-W

m [GeV]

|“|H|H|!||!II!||!||l||l|||||||||m|| L M L. L |

m [GeV]

code available at github.com/JetsGame/GroomRL
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https://github.com/JetsGame/groomrl

Groomed jet mass spectrum

> To test the grooming algorithm derived from the DQN agent, we apply
our groomer to three test samples: QCD, W and Top jets.

> Improvement in jet mass resolution compared to RSD.
> Algorithm performs well on data beyond its training range.

Plain 5 GroomRL-W GroomRL-Top

In1/Aap

In1/8an In1/Aap

code available at github.com/JetsGame/GroomRL
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https://github.com/JetsGame/groomrl

Robustness to non-perturbative effects

> Resilience to hadronisation and underlying event corrections is a key
feature of modern grooming algorithms

> Strategy derived from reinforcement learning shows similar behaviour
to heuristic method

> No parton or hadron-level data was used in the training!
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CONCLUSIONS



Conclusions: the view from pp physics

> Jet substructure is a very active subfield providing a wide range of tools
that can be readily applied in heavy ion physics.

» Cross-talk with machine learning community has lead to many new
advances and insights.

> Many yet to come, e.g. in tackling more complicated regression tasks
or unsupervised learning approaches.

> Discussed a way to study and exploit radiation patterns in a jet using
the Lund plane.

> Introduced a framework for promising application of reinforcement
learning to jet grooming
= easily extendable to other choices of reward function.
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