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Physics at the high energy frontier

I LHC has been colliding protons
at 13 TeV center-of-mass energy.

I Particle physics entering
precision phase in study of EW
symmetry breaking.

I Searching for new physics at the
highest energy ever attained.
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JET SUBSTRUCTURE AND
MACHINE LEARNING



Jets as proxies for partons

Because of color confinement, quarks and gluons shower
and hadronise immediately into collimated bunches of
particles.

Hadronic jets can emerge from a number of processes
I scattering of partons inside colliding protons,
I hadronic decay of heavy particles,
I radiative gluon emission from partons, . . .
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Jets are prevalent
at hadron colliders

[Figures by G. Salam]
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Jet algorithms

A jet algorithm maps final state particle momenta to jet momenta.

{pi}︸︷︷︸
particles

�⇒ { jk}︸︷︷︸
jets

This requires an external parameter, the jet radius R, specifying up to which
angle separate partons are recombined into a single jet.

Basic idea of jet algorithm is to invert QCD branching process, clustering
pairs which are closest in metric defined by the divergence structure of the
theory.

di j � min(k2p
t ,i , k

2p
t , j)
∆2

i j

R2
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Choice of jet radius

The jet radius parameter roughly controls the size of the jet

I Standard choice for small-R jets: R � 0.4 (ATLAS and CMS)
I Used for QCD jets by most experimental analyses
I Aim is to contain most of the decay of light quarks and gluons

I Typical choice for large-R jets: R � 0.8 (CMS) or R � 1 (ATLAS)
I Used for boosted jets by most experimental analyses
I Aim is to contain hadronic decay of decaying particle such as W , Z, top,

H, . . .
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Boosted objects at the LHC

I At LHC energies, EW-scale particles (W/Z/t. . . ) are often produced
with pt � m, leading to collimated decays.

I Hadronic decay products are thus often reconstructed into single jets.

[Figure by G. Soyez]
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Boosted objects at the LHC

I Many techniques developed to identify hard structure of a jet based on
radiation patterns.

I In principle, simplest way to identify these boosted objects is by looking
at the mass of the jet.

I But jet mass distribution is highly distorted by QCD radiation and
pileup.
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Identifying boosted objects

Two main approaches to identify boosted decays:

1. Manually constructing substructure observables that help distinguish
between different origins of jets.

2. Apply machine learning models trained on large input images or
observable basis.

Later in this talk: new approaches bridging some of the gap between these
two techniques.
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Jet grooming: (Recursive) Soft Drop / mMDT

I Mass peak can be partly
reconstructed by removing
unassociated soft wide-angle
radiation (grooming).

I Recurse through clustering tree
and remove soft branch if

min(pt ,1 , pt ,2)
pt ,1 + pt ,2

> zcut

(
∆R12

R0

)β

W jet
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[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]

[FD, Necib, Soyez, Thaler JHEP 1806 (2018) 093]
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Jet grooming: common tools
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Groomed jet mass

I The jet mass is one of the simplest observables.
I Provides a unique connection between measurements and theoretical

calculations.
I Grooming mitigates some non-perturbative effects such as underlying

event.
I Can be calculated to high precision by resumming large logarithms and

matching to fixed order
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Substructure observables

I Variety of observables have been
constructed to probe the hard
substructure of a jet (V/H/t decay
lead to jets with multiple hard cores).

I Radiation patterns of colourless
objects (W/Z/H) differs from quark or
gluon jets.

I Efficient discriminators can be obtained
e.g. from ratio of N-subjettiness or
energy correlation functions.

[Thaler, Van Tilburg JHEP 1103 (2011) 015]
[Larkoski, Salam, Thaler JHEP 1306 (2013) 108]
[Larkoski, Moult, Neill JHEP 1412 (2014) 009]
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Jet shapes: N -subjettiness

I Measures radiation around N axes that align with the dominant
radiation directions

τ
(β)
N �

1
pt Rβ

∑
i∈jet

pt ,i min
a1 ,...,an

(θβia1
, . . . , θ

β
iaN
)

I Use τ(β)21 � τ
(β)
2 /τ

(β)
1 for 2-pronged jets and τ(β)32 � τ

(β)
3 /τ

(β)
2 for

3-pronged jets
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Jet shapes: Energy correlation functions

I Measures dispersion through N-point correlation functions, which are
sensitive to (N − 1)-prong substructure

e(β)2 �

∑
1≤i< j≤N

zi z jθ
β
i j , e(β)3 �

∑
1≤i< j<k≤N

zi z j zkθ
β
i jθ

β
ikθ

β
jk

I Advantage: doesn’t need subjet/axes finding procedure
I Efficient 2-prong discriminants can be constructed through ratio

D(β)2 �
e(β)3(
e(β)2

)3

I While for 3-pronged jets

C(β)3 �
e(β)4 e(β)2(

e(β)3
)2
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Applying Machine Learning in Jet Physics

Recent wave of results in applications of ML algorithms to jet physics.

Classification problems have been tackled through several orthogonal
approaches

I Convolutional Neural Networks used on representation of jet as image

I Recurrent Neural Networks used on jet clustering tree.
I Linear combination or dense network applied to an observable basis

(e.g. N-subjettiness ratios, energy flow polynomials)
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Convolutational Neural Networks and Jet Images

I Project a jet onto a fixed n × n pixel image in rapidity-azimuth, where
each pixel intensity corresponds to the momentum of particles in that
cell.

I Can be used as input for classification methods used in computer
vision, such as deep convolutional neural networks.
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[Cogan, Kagan, Strauss, Schwartzman JHEP 1502 (2015) 118]
[de Oliveira, Kagan, Mackey, Nachman, Schwartzman JHEP 1607 (2016) 069]
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Recurrent Neural Networks and clustering trees

I Train a recurrent/recursive neural network on kinematic information of
successive declusterings of a jet.

I Techniques inspired from Natural Language Processing with powerful
applications in handwriting and speech recognition.

[Louppe, Cho, Becot, Cranmer JHEP 1901 (2019) 057]
[Egan, Fedorko, Lister, Pearkes, Gay 1711.09059]

Frédéric Dreyer 17/50

https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1711.09059


Observable basis as low-dimensional representation

I Construct an observable basis that encodes the main physical
properties of a jet (e.g. set of N-subjettiness ratios, energy flow
polynomials, . . . ).

I Train a dense neural network or use linear methods to build a classifier
from these inputs.

[Komiske, Metodiev, Thaler JHEP 1804 (2018) 013]
[Datta, Larkoski JHEP 1706 (2017) 073]
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Beyond classification problems

I Classification problems are one of the easiest application of ML, but by
far not the only one!

I Many promising applications of ML methods for:
I fast simulations using unsupervised generative models

[Paganini, de Oliveira, Nachman PRL 120 (2018) 042003]

I regression tasks such as pile-up subtraction
[Komiske, Metodiev, Nachman, Schwartz JHEP 1712 (2017) 051]

I anomaly detection for new physics
[Collins, Howe, Nachman PRL 121 (2018) 241803]

I distance metric of collider events
[Komiske, Metodiev, Thaler arXiv:1902.02346]

I etc . . .
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THE LUND PLANE
(arXiv:1807.04758)



Lund diagrams

I Lund diagrams in the (ln zθ, ln θ)
plane are a very useful way of
representing emissions.

I Different kinematic regimes are
clearly separated, used to illustrate
branching phase space in parton
shower Monte Carlo simulations and
in perturbative QCD resummations.

I Soft-collinear emissions are emitted
uniformly in the Lund plane

dw2 ∝ αs
dz
z

dθ
θ

Primary Lund-plane regions

soft-collinear

hard-collinear (large
z)

IS
R
(larg

e
Δ
)

non-pert. (small kt)

MPI/UE

ln(R/Δ)
ln
(k

t/
G
eV
)

Frédéric Dreyer 20/50



Lund diagrams

Features such as mass, angle and momentum can easily be read from a
Lund diagram.

jet mass ≡ m2

p2
t R2 ≈ z1θ2

1
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Lund diagrams for substructure

Substructure algorithms can often also be interpreted as cuts in the Lund
plane.

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
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Studying jets in the Lund plane

Lund diagrams can provide a useful approach to study a range of jet-related
questions

I First-principle calculations of Lund-plane variables.
I Constrain MC generators, in the perturbative and non-perturbative

regions.
I Brings many soft-drop related observables into a single framework.
I Impact of medium interactions in heavy-ion collisions.
I Boosted object tagging using Machine Learning methods.

We will use this representation as a novel way to characterise radiation
patterns in a jet, and study the application of recent ML tools to this picture.
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Lund plane representation

To create a Lund plane representation of a jet, recluster a jet j with the
Cambridge/Aachen algorithm then decluster the jet following the hardest
branch.

1. Undo the last clustering step, defining two subjets j1 , j2
ordered in pt .

2. Save the kinematics of the current declustering
∆ ≡ (y1 − y2)2 + (φ1 − φ2)2 , kt ≡ pt2∆,

m2 ≡ (p1 + p2)2 , z ≡
pt2

pt1+pt2
, ψ ≡ tan−1 y2−y1

φ2−φ1
.

3. Define j � j1 and iterate until j is a single particle.
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Lund plane representation
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Lund representation of a jet

I Each jet has an image
associated with its primary
declustering.

I For a C/A jet, Lund plane is filled
left to right as we progress
through declusterings of hardest
branch.

I Additional information such as
azimuthal angle ψ can be
attached to each point. 0 1 2 3 4 5 6 7 8

ln(R/ )

4

2

0

2

4

6

ln
(k

t/G
eV

)

Lund image for a 2 TeV QCD jet
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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Analytic study of the Lund plane

To leading order in perturbative QCD and for ∆ � 1, one expects for a
quark initiated jet

ρ ' αs(kt)CF

π
z̄
(
pgq(z̄) + pgq(1 − z̄)

)
, z̄ �

kt

pt ,jet∆

ln
 
k
t/G

e
V

ln 1/Δ12

LO analytic
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I Lund plane can be calculated
analytically.

I Calculation is systematically
improvable.
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Declustering other jet-algorithm sequences

I Choice of C/A algorithm to create clustering sequence related to
physical properties and associated to higher-order perturbative
structures

I anti-kt or kt algorithms result in double logarithmic enhancements

ρ̄(anti-kt )
2 (∆, κ) ' +8CF CA ln2 ∆

κ
ρ̄(kt )

2 (∆, κ) ' −4C2
F ln2 ∆

κ

t

2

1C/A

q
2

anti−k 1

q

2
kt C/A

2 1

q

1

q
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Declustering other jet-algorithm sequences
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Declustering other jet-algorithm sequences
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Lund images for QCD and W jets

I Hard splittings clearly visible, along the diagonal line with jet mass
m � mW .
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Discriminating features in the Lund plane

I Can identify discriminating features by considering log ratio of
averaged images.

I W peak is clearly visible – but after cuts, depletion of emissions at
relatively large angles remains distinctive signature.
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Secondary Lund plane

I Secondary Lund planes are ignored: some information is therefore
lost, but still achieves good performance.

I This limitation can be overcome by extending the methods we will
discuss to include secondary planes as inputs.
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APPLICATION TO BOOSTED W TAGGING



Tagging jets in the Lund Plane

We will now investigate the potential of the Lund plane for boosted-object
identification.

Two different approaches:

I A log-likelihood function constructed from a leading emission and
non-leading emissions in the primary plane.

I Use the Lund plane as input for a variety of Machine Learning methods.

As a concrete example, we will take dijet and WW events, looking at CA jets
with pt > 2 TeV.
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Log-likelihood use of Lund Plane: leading emission

Log-likelihood approach takes two inputs:

I First one obtained from the “leading” emission.
I The second one which brings sensitivity to non-leading emissions.

Leading emission is determined to be the first emission in the Lund
declustering sequence that satisfies z > 0.025 (∼ mMDT tagger)

Define a L` log likelihood function

L`(m , z) � ln
(

1
NS

dNS

dmdz

/
1

NB

dNB

dmdz

)
where the ratio of dNS/B

dmdz is the differential distribution in m and z of the
leading emission for signal sample (background) with NS(NB) jets.
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Log-likelihood use of Lund Plane: non-leading emissions

Non-leading (n`) emissions within the primary Lund plane are incorporated
using a function

Ln`(∆, kt ;∆(`)) � ln
(
ρ(n`)S

/
ρ(n`)B

)
where ρ(n`) is determined just over the non-leading emissions,

ρ(n`)(∆, kt ;∆(`)) �
dn(n`)emission

d ln kt d ln 1/∆ d∆(`)

/
dNjet

d∆(`)

as a function of the angle ∆(`) of the leading emission.
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Log-likelihood use of Lund Plane: non-leading emissions

Ln` log-likelihood function in a specific bin.
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Log-likelihood use of Lund Plane: full discriminator

Overall log-likelihood signal-background discriminator for a given jet is then
given by

Ltot � L`(m(`) , z(`)) +
∑
i,`

Ln`(∆(i) , k(i)t ;∆(`)) +N(∆(`))

where N � −
∫

d ln∆ d ln kt
(
ρ(`)S − ρ

(`)
B

)
.

Each subjet i in the sum brings information about whether it is in a more
background-like or signal-like part of the Lund plane.

Optimal discriminator if:

I Leading emission correctly associated with W ’s two-prong structure.
I Non-leading emissions are independent from each other.
I Emission patterns for those emissions depend only on ∆(`).

Frédéric Dreyer 36/50



Tagging with LL method

I Compare the LL approach in
specific mass-bin with equivalent
results from the Les Houches
2017 report (arXiv:1803.07977).

I Substantial improvement over
best-performing substructure
observable.
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ML applied to the Lund plane

A variety of ML methods can be applied to the Lund plane in order to
construct efficient taggers.

We will investigate three approaches:

I Convolutional Neural Networks (CNN) applied on 2D Lund images.
I Deep Neural Networks (DNN) applied on the sequence of

declusterings.
I Long Short-Term Memory (LSTM) networks applied on the sequence of

declusterings.
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Recurrent networks with a Lund plane

I Jets generally associated with a clustering trees, where
each node contains similar type of information.

I Particularly well-adapted for recurrent networks, which
loop over inputs and use the same weights.

I LSTMs are a widely used variant designed to have
memory over longer separations.

I For each declustering node, we consider the inputs{
ln(R/∆R12), ln(kt/GeV)

}
I Inputs are IRC safe as long as there is a cutoff in

transverse momentum.
Figure from

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTMs for jet tagging

I LSTM network substantially
improves on results obtained
with other methods.

I Large gain in performance,
particularly at higher
efficiencies.
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Sensitivity to non-perturbative effects
I Performance compared to resilience to MPI and hadronisation corrections.
I Vary cut on kt , which reduces sensitivity to the non-perturbative region.
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REINFORCED JET GROOMING
(arXiv:1903.09644)



Grooming a jet tree

I Cast jet as clustering tree where state of each node T (i) is a tuple with
kinematic information on splitting

st �
{

z ,∆ab , ψ,m , kt
}

I Grooming algorithm defined as a function πg observing a state and
returning an action {0, 1} on the removal of the softer branch, e.g.

πRSD(st ) �
{

0 if z > zcut
(∆ab

R0

)β
1 else
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Reinforcement learning with Deep-Q-Networks

Reinforcement learning are usually built from two elements:

I an agent deciding which actions to take in order to maximize reward
I an environment, observed by the agent and affected by the action

Deep Q-Network is a RL algorithm
which uses a table of Q-values
Q(s , a), determining the next ac-
tion as the one that maximizes Q.

A neural network is used to approximate the optimal action-value function

Q∗(s , a) � max
π
E[rt + γrt+1 + . . . |st � s , at � a , π]

[Mnih et al, Nature 2015]
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Defining a grooming environment

To find optimal grooming policy πg , define an environment and a reward
function so that problem can be solved with RL.

I Initialize list of all trees used for training.
I Each episode starts by randomly selecting a tree and adding its root to

a priority queue (ordered in ∆ab).
I Each step removes first node from priority queue, then takes action on

removal of soft branch based on state st of node.
I After action, update kinematics of parent nodes, add current children to

priority queue, and evaluate reward function.
I Episode terminates once priority queue is empty.
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Defining the reward function

I Key ingredient for optimization of grooming policy is reward function
used at each training step.

I We construct a reward with two components
I First piece RM evaluated on the full jet tree, comparing the jet mass to a

target value.
I Second component RSD looks at kinematics of current node.

I Total reward is then given by

R(m , at ,∆, z) � RM(m) +
1

NSD
RSD(at ,∆, z)

I where mass reward is defined using a Cauchy distribution

RM(m) �
Γ2

π(|m − mtarget |2 + Γ2)
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Defining the reward function

I To provide baseline behaviour for the groomer, we include a
“Soft-Drop” reward RSD evaluated on the current node

I Calculated on the current node state, gives positive reward for removal
of wide-angle soft radiation and for keeping hard-collinear emissions.

RSD(at ,∆, z) � at min
(
1, e−α1 ln(1/∆)+β1 ln(z1/z))

+ (1 − at)max
(
0, 1 − e−α2 ln(1/∆)+β2 ln(z2/z))

RSD  for  at = 1

 0  1  2  3  4  5

ln 1/Δ

-12

-10

-8

-6

-4

-2

 0

ln
 z

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

α1 = 0.59, β1 = 0.18, ln z1 = -0.92

RSD  for  at = 0

 0  1  2  3  4  5

ln 1/Δ

-12

-10

-8

-6

-4

-2

 0

ln
 z

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

α2 = 0.16, β2 = 0.33, ln z2 = -3.5

Frédéric Dreyer 46/50



Implementation and multi-level training

I Train RL agent with multi-level approach using both signal and bkg into
account. Sample consists of 500k W /QCD or Top/QCD Pythia 8 jets.

I At the beginning of each episode, randomly select a signal or
background jet with probability 1 − pbkg.

I In the background case, mass reward function is changed to

Rbkg
M (m) �

m
Γbkg

exp
(
− m
Γbkg

)
.
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Groomed jet mass spectrum

I To test the grooming algorithm derived from the DQN agent, we apply
our groomer to three test samples: QCD, W and Top jets.

I Improvement in jet mass resolution compared to RSD.
I Algorithm performs well on data beyond its training range.

QCD W Top

code available at github.com/JetsGame/GroomRL
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Groomed jet mass spectrum

I To test the grooming algorithm derived from the DQN agent, we apply
our groomer to three test samples: QCD, W and Top jets.

I Improvement in jet mass resolution compared to RSD.
I Algorithm performs well on data beyond its training range.

Plain GroomRL-W GroomRL-Top

code available at github.com/JetsGame/GroomRL
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Robustness to non-perturbative effects

I Resilience to hadronisation and underlying event corrections is a key
feature of modern grooming algorithms

I Strategy derived from reinforcement learning shows similar behaviour
to heuristic method

I No parton or hadron-level data was used in the training!
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CONCLUSIONS



Conclusions: the view from pp physics

I Jet substructure is a very active subfield providing a wide range of tools
that can be readily applied in heavy ion physics.

I Cross-talk with machine learning community has lead to many new
advances and insights.

I Many yet to come, e.g. in tackling more complicated regression tasks
or unsupervised learning approaches.

I Discussed a way to study and exploit radiation patterns in a jet using
the Lund plane.

I Introduced a framework for promising application of reinforcement
learning to jet grooming

⇒ easily extendable to other choices of reward function.
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