Dirac analysis of cosmological perturbation theory

arXiv:1810.11621

Przemysław Małkiewicz
National Centre for Nuclear Research,
Warszawa

Winter Mini Workshop on Gravity and Cosmology
Warszawa, 21-23 Jan 2019
Motivation

Cosmological perturbation theory, applicable to early universe,

- deals with the dynamics of linear perturbations to the FLRW universe
- admits the gauge group of linear space-time diffeomorphisms (the issue of coordinate dependence)
- within the canonical formalism we have a standard set of concepts to handle gauge symmetries such as first-class constraints, gauge fixing conditions, gauge invariant quantities, Dirac brackets, canonical isomorphisms between gauge-fixed surfaces... (Dirac procedure)
- the knowledge of the canonical gauge-invariant quantities and their Hamiltonian dynamics are necessary for canonical quantization
- method for handling gauge-fixing conditions is necessary to obtain physical interpretation of the formalism
Previous results

The approach by D. Langlois, CQG 11 389-407 (1994):

- starts with the ADM canonical formalism
- makes a canonical transformation that separates physical DOFs from gauge DOFs in the kinematical phase space
- provides an efficient computation of the physical Hamiltonian (in terms of physical DOFs) as e.g. the curvature term vanishes (a gauge quantity)
Previous results

The approach by D. Langlois, CQG 11 389-407 (1994):

- starts with the ADM canonical formalism
- makes a canonical transformation that separates physical DOFs from gauge DOFs in the kinematical phase space
- provides an efficient computation of the physical Hamiltonian (in terms of physical DOFs) as e.g. the curvature term vanishes (a gauge quantity)

In this talk, I will present a “new” approach:

- based on the Dirac procedure for constrained systems
- it not only identifies the gauge-invariant variables but also uses them to establish the relation between different gauge-fixing conditions (which give them physical meaning)
- gives a quick derivation of the physical Hamiltonian and this has a simple explanation
Gravity + perfect fluid \((p = w \rho)\),

\[
H = \int_{\Sigma} (N\mathcal{H}_0 + N^a\mathcal{H}_a) \, d^3x, \quad (q_{ab}, \pi^{ab}, \phi, p^\phi), \quad \text{where}
\]

\[
\mathcal{H}_0 = \sqrt{q} \left(-3R + q^{-1}(\pi_a^b \pi_b^a - \frac{1}{2} \pi^2) \right) + \frac{(p^\phi)^2}{\sqrt{q}K\mu^{\alpha-2}} - \sqrt{q}K\mu^\alpha,
\]

\[
\mathcal{H}_a = -2D_b\pi^b_a + p^\phi \phi_{,a}.
\]

The fluid pressure: \(p(\mu) = K\mu^\alpha, \quad \alpha = \frac{w+1}{w}\).

The fluid's flow: \(U_\nu = \mu^{-1}\phi_{,\nu}, \quad \text{where} \quad \frac{1}{N}\phi_{,0} = \frac{p^\phi}{\sqrt{q}K\mu^{\alpha-2}} + \frac{N^a}{N}\phi_{,a}\).

The Hamiltonian: \(H_{f,0} = \sqrt{q} \cdot \rho \bigg|_{t=\text{const}}, \quad H_{f,a} = -N \sqrt{q}(\rho_0 + p)U^0 U_a.\)
Expansion of ADM + Schutz formalism

FLRW + perturbations split:

\[\delta q_{ab} = q_{ab} - a^2 \delta_{ab}, \quad \delta \pi^{ab} = \pi^{ab} - \frac{1}{3} p \delta^{ab}, \quad \delta \phi = \phi - \bar{\phi}, \quad \delta p^{\phi} = p^{\phi} - \bar{p}^{\phi}, \]

\[a^2 = \int \frac{q_{ab} \delta^{ab}}{3} \, d^3 x, \quad p = \int \pi^{ab} \delta_{ab} \, d^3 x, \quad \bar{\phi} = \int \phi \, d^3 x, \quad \bar{p}^{\phi} = \int p^{\phi} \, d^3 x, \]

The Poisson brackets:

\[\{ \delta \phi(x), \delta p^{\phi}(x') \} = \delta^3(x - x'), \quad \{ \delta q_{ab}(x), \delta \pi^{cd}(x') \} = \delta^3_{(a} \delta^d_{b)}(x - x'), \]

\[\{ \bar{\phi}, \bar{p}^{\phi} \} = 1, \quad \{ a^2, p \} = 1. \]
 Canonical cosmological perturbation theory

The total Hamiltonian is a combination of the zero-order constraint, first-order constraints and a nonvanishing second-order term:

\[H = N\mathcal{H}_0^{(0)} + \int \Sigma N\mathcal{H}_0^{(2)} + \delta N\delta\mathcal{H}_0 + \delta N^a\delta\mathcal{H}_a \]

Not an exact gauge system. Time problem at zero order. No time problem at first order.

One explicit formula,

\[
\mathcal{H}_{g,0}^{(2)} = a\delta\pi_{ab}\delta\pi^{ab} - \frac{1}{2}a(\delta\pi)^2 + \frac{a^{-1}p}{3}\delta\pi^{ab}\delta q_{ab} - \frac{a^{-1}p}{6}\delta\pi\delta q + \frac{5a^{-3}p^2}{72}\delta q_{ab}\delta q^{ab} + \frac{7a^{-3}p^2}{48}(\delta q)^2 + \frac{a^{-3}}{2} \left(\delta q_{ab,ab}\delta q + \frac{3}{2}\delta q_{aa,c}\delta q_{bb,c} - \delta q_{ab,b}\delta q_{ac,c} + \frac{1}{2}\delta q_{ab,c}\delta q_{ab,c}\right).
\]
Dirac procedure

\[\mathbf{H}^{(2)} = \int N \mathcal{H}_0^{(2)} + \delta N \delta \mathcal{H}_0 + \delta N^a \delta \mathcal{H}_a \]

Dirac observables \(D \):

\[\delta \tilde{\xi}(D) \approx 0, \quad \delta \tilde{\xi}(\cdot) = \{ \cdot, \int \delta \xi^\mu \delta \mathcal{H}_\mu \} \]

Gauge-fixing conditions “\(\delta c_\mu = 0 \)”: \[\det |\{ \delta \phi_\mu, \delta \phi_\nu \}| \neq 0, \quad \delta \phi_\mu \in \{ \delta \mathcal{H}_\mu, \delta c_\mu \} \]

Determination of \(\delta N, \delta N^a \):

\[\{ \delta c_\mu, \mathbf{H}^{(2)} \} \approx \int N \{ \delta c_\mu, \mathcal{H}_0^{(2)} \} + \delta N \{ \delta c_\mu, \delta \mathcal{H}_0 \} + \delta N^a \{ \delta c_\mu, \delta \mathcal{H}_a \} \approx 0 \]
Dirac procedure

Dirac brackets:

\[\{ \cdot, \cdot \}_D = \{ \cdot, \cdot \} - \{ \cdot, \delta \phi_\mu \} \{ \delta \phi_\mu, \delta \phi_\nu \}^{-1} \{ \delta \phi_\nu, \cdot \} \]

Properties:

1. \(\{ \delta \phi_\mu, \cdot \}_D = 0 \),
2. \(\{ D_i, D_j \}_D \approx D_k \approx \{ D_i, D_j \} \),
3. \(\{ \cdot, \cdot \}_D = \{ \cdot, D_i \} \{ D_i, D_j \}^{-1} \{ D_j, \cdot \} \), where \(\{ D_j, \delta \phi_\mu \} = 0 \).

Reduced Hamiltonian to be used with \(\{ \cdot, \cdot \}_D \):

\[
H^{(2)} = \int \left(N H_0^{(2)} + \delta N \delta H_0 + \delta N^a \delta H_a \right) \bigg|_{\delta \phi_\mu = 0, \mu = 1, \ldots, 8}
\]

\[
= N \int H_0^{(2)} \bigg|_{\delta \phi_\mu = 0, \mu = 1, \ldots, 8}
= N \int H \left(D \bigg|_{\delta \phi_\mu = 0, \mu = 1, \ldots, 8} \right)
\]
Suppose there are two sets of gauge fixing conditions,

\[\delta c_\mu = 0 \text{ and } \delta c'_\mu = 0, \]

then, there exists the canonical isomorphism

\[D_i|_{\delta c_\mu = 0} \mapsto D_i|_{\delta c'_\mu = 0}, \]

\[\left\{ D_i|_{\delta c_\mu = 0}, D_j|_{\delta c_\mu = 0} \right\}_D \approx \left\{ D_i|_{\delta c'_\mu = 0}, D_j|_{\delta c'_\mu = 0} \right\}_{D'} \approx \left\{ D_i, D_j \right\}. \]
SVT Decomposition

We Fourier-transform the metric perturbations:

\[
\delta q_{ab} = \delta q_1 A^1_{ab} + \delta q_2 A^2_{ab} + \delta q_3 A^3_{ab} + \delta q_4 A^4_{ab} + \delta q_5 A^5_{ab} + \delta q_6 A^6_{ab}
\]

\(\text{scalar perts}\) \(\text{vector perts}\) \(\text{tensor perts}\)

SVT decomposition \((\vec{k}, \vec{v}, \vec{w})\):

\[
H^{(2)} = \int \sum \left(N H_0^{(2S)} + \delta N \delta H_0 + \delta N \vec{k} \delta H_{\vec{k}} \right) + \int \sum \left(N H_0^{(2V)} + \delta N \vec{v} \delta H_{\vec{v}} + \delta N \vec{w} \delta H_{\vec{w}} \right) + \int \sum N H_0^{(2T)}
\]

\(\text{scalar part}\) \(\text{vector part}\) \(\text{tensor part}\)

phase space = \(\mathbb{R}^6\) (scalars) \(\times\) \(\mathbb{R}^4\) (vectors) \(\times\) \(\mathbb{R}^4\) (tensors)
Reduced phase space for vector perturbations

The reduced Hamiltonian:

\[
H^{(2)}_V = \int_{\Sigma} N H^{(2)}_0 + \delta N^\vec{v} \delta H_{\vec{v}} + \delta N^{\vec{w}} \delta H_{\vec{w}}
\]

The phase space:

\((\delta q_3, \delta q_4, \delta \pi_3, \delta \pi_4)\)

The gauge-fixing conditions:

\[\delta c_{\vec{v}} = 0, \delta c_{\vec{w}} = 0 \implies \delta q_3 = \delta q_4 = \delta \pi_3 = \delta \pi_4 = 0.\]

The consistency condition:

\[\{\delta c_{\vec{v}}, H^{(2)}_V\} = 0, \{\delta c_{\vec{w}}, H^{(2)}_V\} = 0 \implies \delta N^\vec{v} = 0, \delta N^{\vec{w}} = 0.\]
Reduced phase space for scalar perturbations

The reduced Hamiltonian:

$$H^{(2)}_S = \int N H_0^{(2S)} + \delta N \delta H_0 + \delta N \vec{k} \delta \mathcal{H}_k$$

Assume $\delta D = a \delta q_1 + b \delta q_2 + c \delta \pi_1 + d \delta \pi_2 + e \delta \phi + f \delta p^\phi$ and insert into

$$\forall \delta \xi^0, \delta \vec{k} \int \delta \xi^0 \{ \delta D, \delta H_0 \} + \int \delta \vec{k} \{ \delta D, \delta \mathcal{H}_k \} \approx 0,$$

Two basic Dirac observables:

$$\Phi := p^\phi \delta \phi + \frac{\alpha}{\alpha - 1} \left(\frac{p^\phi}{6} \right) (3 \delta q_1 - \delta q_2),$$

$$\Pi := \frac{\delta p^\phi}{p^\phi} - \frac{3(\alpha - 1)}{2} a^{-2} p^{-1} p^\phi \delta \phi - \frac{3\alpha}{4} \frac{\delta q_1}{a^2} + \frac{\alpha - 2}{4} \frac{\delta q_2}{a^2},$$

where $\{ \Phi_{\vec{k}}, \Pi_{\vec{l}} \} = \delta_{\vec{k}, \vec{l}}$ (up to first order).
Physical dynamics

In the *spatially flat slicing* one kills the geometry perturbation:

\[\delta c_1 := \delta q_1, \quad \delta c_2 := \delta q_2, \]

so that

\[
\left. H^{(2)} \right|_{\delta c_1=\delta c_2=\delta H_0=\delta H_k=0} = N \int \left. H_0^{(2S)} \right|_{\delta c_1=\delta c_2=\delta H_0=\delta H_k=0} (\delta \phi, \delta p^\phi),
\]

where \(\{\delta \phi, \delta p^\phi\}_D = \{\delta \phi, \delta p^\phi\} = 1 \) and the curvature term vanishes. Finally,

\[
H_{phys} = N \int \left(\frac{\alpha a p^2}{12(\alpha - 1)^2} \Pi|_{\delta c_1=0=\delta c_2}^2 + \frac{3(\alpha - 1)}{\alpha} \frac{a^{-3} k^2}{p^2} \Phi|_{\delta c_1=0=\delta c_2}^2 \right),
\]

where

\[
\Pi|_{\delta c_1=0=\delta c_2} = \frac{\delta p^\phi}{p^\phi} - \frac{3(\alpha - 1)}{2} a^{-2} p^{-1} p^\phi \delta \phi, \quad \Phi|_{\delta c_1=0=\delta c_2} = p^\phi \delta \phi.
\]
Relation between gauges

\[\delta H_\mu = 0 \]

\[\delta \chi = \{ , \int \delta \chi' \delta H_\mu \} \]

Suppose there are two sets of gauge fixing conditions,

\[\delta c_\mu = 0 \text{ and } \delta c'_\mu = 0, \]

then, there exists the canonical isomorphism

\[\Phi |_{\delta c_\mu=0} \mapsto \Phi |_{\delta c'_\mu=0}, \quad \Pi |_{\delta c_\mu=0} \mapsto \Pi |_{\delta c'_\mu=0}, \]

\[\{ \Phi |_{\delta c_\mu=0}, \Pi |_{\delta c_\mu=0} \}_D \approx \{ \Phi |_{\delta c'_\mu=0}, \Pi |_{\delta c'_\mu=0} \}_{D'}, \approx \{ \Phi, \Pi \}. \]
Gauge-fixing conditions

1. The lapse & shifts are on equal footing with the three-metric perturbations in the configuration space approach.

\[
\int N\{\delta c_i, \mathcal{H}_0(2S)\} + \delta N\{\delta c_i, \delta \mathcal{H}_0\} + \delta N\tilde{k}\{\delta c_i, \delta \mathcal{H}_{k}\} \approx 0,
\]

is a condition for \(\delta N\) and \(\delta N\tilde{k}\) or for \(\delta c_i\).

2. Invertible map:

\[
(\delta q_1, \delta q_2, \delta \pi_1, \delta \pi_2, \delta p^\phi, \delta \phi) \leftrightarrow (\delta q, \delta R, \delta \theta, \delta \sigma, \delta \rho, \delta \phi).
\]

3. Examples of gauges

Uniform density gauge: \(\delta \rho = 0\) and \(\delta q = 0\),

\[
\Phi|_{\delta c_\mu=0} = \frac{4}{3}a\delta \sigma + a^3 \left(\frac{\alpha}{6(\alpha - 1)} \frac{p^2}{k^2} - \frac{4}{3}\right) \delta \theta,
\]

\[
\Pi|_{\delta c_\mu=0} = -2(\alpha - 1)a^{-1}p^{-1}\delta \sigma + ap^{-1}\left(2(\alpha - 1) - \frac{1}{4}(\alpha - 2)\frac{p^2}{k^2}\right) \delta \theta
\]

\[
\frac{\delta N}{N} = \frac{8ak^2}{3p}(\delta \sigma - a^2\delta \theta) + \frac{2a}{p}\delta \theta, \quad \frac{\delta N\tilde{k}}{N} = -\frac{8(\alpha - 1)}{a^2p^2\alpha}(\delta \sigma - a^2\delta \theta),
\]
Gauge-fixing conditions II

Comoving orthogonal: $\delta \phi = 0$ and $\delta \rho + \frac{\alpha}{12(\alpha-1)} \frac{p^2}{a^8} \delta q = 0,$

$$\Phi|_{\delta c_\mu = 0} = \frac{\alpha}{\alpha - 1} \frac{p}{4} \frac{a^4}{k^2} \delta R,$$

$$\Pi|_{\delta c_\mu = 0} = -\frac{\delta q}{2a^6} - \frac{3(\alpha - 2)}{8} \frac{a^2}{k^2} \delta R.$$

$$\frac{\delta N^k}{N} = 0, \frac{\delta N}{N} = \frac{\delta q}{2a^6(\alpha - 1)}.$$

Longitudinal gauge: $\delta R - \frac{2}{3} a^{-8} k^2 \delta q = 0$ and $\frac{\delta N^k}{N} = 0 \Rightarrow \delta \sigma = 0,$

$$\frac{\delta N}{N} = \frac{1}{6} a^{-6} \delta q,$$

$$\Phi|_{\delta c_\mu = 0} = -\frac{4}{3} a^3 \delta \theta + \frac{\alpha}{\alpha - 1} \frac{p}{4} \frac{a^4}{k^2} \delta R,$$

$$\Pi|_{\delta c_\mu = 0} = \frac{2(\alpha - 1)(\alpha - 2)}{\alpha} a p^{-1} \delta \theta + a^2 \left(\frac{6(\alpha - 1)}{\alpha p^2} - \frac{3(\alpha - 2)}{8k^2} \right) \delta R.$$
Extension to the multifluid case

Replace \mathcal{H}_f with $\sum_i \mathcal{H}_{f_i}$. There are $2n$ Dirac observables for n fluids,

$$\Phi_i := \delta D_{2i} = \bar{p}^{\Phi_i} \delta \phi_i + \frac{a^{-3} \alpha_i^{-1} p^{T_i}}{2a p} (3 \delta q_1 - \delta q_2),$$

$$\Pi_i := \delta D_{1i} = \frac{\delta p^{\phi_i}}{\bar{p}^{\phi_i}} - \frac{\delta q_2}{2a^2},$$

where $\{\Phi_i(k), \Pi_j(-\bar{l})\} = \delta_{ij} \delta_{k,\bar{l}}$ (up to first order).

The reduced Hamiltonian:

$$H = N\mathcal{H}_0\big|^{(0)} + \sum_i a^{-3} \alpha_i^{-1} p^{T_i} \Pi_i^2 + \sum_i \frac{k^2 a^{-2}}{2a^{-3} \alpha_i^{-1} p^{T_i}} \Phi_i^2$$

$$- \frac{3a^{-2} p^{-1}}{2} \left(\sum_k \Phi_k \right) \left(\sum_i a^{-3} \alpha_i^{-1} p^{T_i} \Pi_i \right) + \frac{3a^{-3}}{8} \left(\sum_k \Phi_k \right)^2.$$
Summary

- Dirac procedure works nicely for cosmological perturbation theory for *any* number of matter components.
- It provides a convenient way to define and relate various gauge-fixing conditions.
- It provides a *simple calculation* of the physical dynamics.
- It establishes a starting point for quantization of the entire formalism (next step).
- It should be more or less straightforward to implement this approach in *anisotropic* cosmological perturbation theories (next step).
- It could be of great use for developing higher order cosmological perturbation theory (next step).