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@ Challenges of the Energy and Luminosity Frontier
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The overwhelming hadronic environment of the LHC
HL-LHC: Ly = 10¥%em s = 0.1 pb_1 s~ = 30kHz of dijet events

Standard Model Production Cross Section Measurements

g 1011
o 100
10°
10*
103

10?

10!

D.W. Miller (EFI, Chicago)

Status: July 2018

A0 wotal (20 .
D AO neesie ATLAS Preliminary
2. Run1,2 vs=78,13 TeV
Téo
o
-

LHC pp Vs =7 TeV

Theory

Data 4.5-4.9fb!

LHC pp V5 =8 TeV

Data 20.2 -20.3fb~*

LHC pp V5=13 TeV

SR = R =
mokow )
8% ™o 4o, B Data 327980
pr 100 Gev 2 2 1
A o ' Q..
s e B - Sk
s, Ao O 2 B G R
-
w e Feg" o
23 O .3 mze " w.
Bl g e |
) 2 o ‘5
L ool g g
ag . a [ )
a 2, B
B % phca T En TEo
o n2e -~
) o L]
L 2 Q = o =
o o 2y
w1 n
w27 g P B -
n 2
[ [
PP Jets ¥ w z tt t VWV Y H WV VytiWtZ tiH tty Y77 Wjj Zjj WWZy Wy ywwy ZyjiVVjj
e e st fi-
o | o ot 1ot o

Machine Learning for Future Triggers Systems

January 15, 2019

3/19



Hadronic final states: major part of LHC physics program

& Run: 271516
Event: 7786087
2015-07-13 09:38:38 CEST

ATLAS

EXPERIMENT

@ Physics may be compromised due to trigger & data proc. limitations
o Even if we can trigger, offline data management may be a bottle-neck
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Hadronic final states: major part of LHC physics program
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Outline

@ ATLAS Phase I & Il Hadronic Trigger Systems
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Triggering on complex hadronic final states

Go GLOBAL: global feature extraction trigger (gFEX) for ATLAS Run 3
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Triggering on complex hadronic final states

Go GLOBAL: global feature extraction trigger (gFEX) for ATLAS Run 3

analyze event-level features for
characteristics of moderate pr
(~100’s of GeV) signatures of
new and key physics processes
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Triggering on complex hadronic final states

Go GLOBAL: global feature extraction trigger (gFEX) for ATLAS Run 3
Goal

analyze event-level features for
characteristics of moderate pr
(~100’s of GeV) signatures of
new and key physics processes )

Strategy

input entire calorimeter onto a
single trigger board
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Triggering on complex hadronic final states

Go GLOBAL: global feature extraction trigger (gFEX) for ATLAS Run 3
Goal
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: new and key physics processes )

Strategy

input entire calorimeter onto a
single trigger board

v,
Tactics

@ coarse towers (0.2x0.2)
o state-of-the-art FPGAs

@ MPSoC for control,
additional processing

4

e == E
D.W. Miller (EFI, Chicago) Machine Learning for Fulule Tngoers Systems January 15, 2019 6/19



gFEX Performance for Run 3

o Signal: e.g. boosted tops

-0.5 0.5 5

. - T . T .
o Compare to Run 2 triggers g 1.0 o Ducﬁ!!!ﬂﬂ ™ ﬂ”
S U
e o e T e = r . = 1
[ ATLAS Preliminary Simulation — Anti-k, R=10 R w 0.8 e O A&’M’ —
25 * Calorimeter clusters | © r o 7
[ Z'—ffevent,m, =175 TeV Sublets GIA A= 0.0 1 g L ° & 4
[ =777 GoV.my, = 1801 Gov - roon 1 t F e O &
L -bjet 7 2 0.6~ - s ATLAS Prehmmary—
F = Top rediation ] F o Simulation
r ] [ . o ]
s 7 r » 1 {5=14 TeV (1)=80 7
r ] 0.4 = & antiky R=1.0 (5% trimmed)
r A I o g >|k D=0.3 subjet wnlhp >20 GeV |
L ] r * A [nf*!|<2.5; isolated by A Rz B
11— - r ® 4 7
C ] 0.2 o' 4 19100 (Run 1 L1Calo sim.) L1_G140 —|
L - - e} 1 subjet ® 1subjet
F i (B 0 a4 O 2eubjets u 2subjets |
05 R - L *0 a A 23 subjets A 23 subjets |
F . 0 ﬂr@ﬂm ‘ | ‘ ! ‘
Lol T NG L L] 200 300 400 500
-1 1 1.5 2 2.
AN y

uncalibrated p' [GeV]

‘ Current online trigger ‘ | New boosted object gFEX trigger 1

gFEX can efficiently identify jet structure at 300 GeV!
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The gFEX trigger design

é Hadronic Electromagnetic

o Implement new algorithms using state-of-the-art FPGAs + SoCs

D.W. Miller (EFI, Chicago) Machine Learning for Future Triggers Systems January 15, 2019 8/19



The gFEX trigger design

® FPGA #C FPGA #A FPGA #B FPGA #C
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o Implement new algorithms using state-of-the-art FPGAs + SoCs
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The gFEX trigger design

¢ pFPGA #3 pFPGA #1 pFPGA #2 pFPGA #3

34

o Implement new algorithms using state-of-the-art FPGAs + SoCs
o Image-like event format is well-suited for computer vision & ML

D.W. Miller (EFI, Chicago) Machine Learning for Future Triggers Systems January 15, 2019 8/19



gFEX Design: Virtex 7 & Zynq UltraScale+
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gFEX Design: Virtex 7 & Zynq UltraScale+
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gFEX Design: Virtex 7 & Zynq UltraScale+
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gFEX already recorded Stable Beams data in Run 2!

o gFEX recorded data Stable
Beams data on Oct 16, 2018!

o Calorimeter back-end system is
a prototype for the Phase I/I1
upgrade (Run 3 & 4)

o This is a major milestone, but
there is certainly more to come
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Run 3 ideas for Run 4 reality: Global Event Processor

| LASP I
[ ops | Fex |

/ CTP
| TPPr I - Interface
| HGTD I RolE =
Interface - a

| Muon I—l MuCTPi I—l

LiTrack

Receives trigger object information from all systems (jets, electrons, muons,
timing, and possibly tracks). Makes global trigger decision about the event.

Built from a common module with both a Zynq and two processor FPGAs.
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Run 3 ideas for Run 4 reality: Hardware Track Triggers

Network Switch

S—

R 2
HitH
o

HitH
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i Point-to-point optical e Links through
ﬁ Commodity network <= o Iinkg P! ATCA backplane

Regional tracking at 1 MHz and global tracking at 100 kHz accomplished
with associative memory ASICs (AMTP) with tracking in FPGAs (SSTP)
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© Machine learning using FPGAs and MPSoCs
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Convolutional neural networks (CNN) for jet identification

Komiske, Metodiev, Schwartz
(arXiv:1612.01551)
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Convolutional neural networks (CNN) for jet identification
Effectively the same CNN from Komiske,
et al. can be used for top-tagging, using

\ either high-level observables or jet images.
i

mass + 2—body

mass + 3—body

103 = mass + 4—body
—— mass + 5-body
pre-process _ —— mass + 6-body
5 —— mass + jet image
& 10?7
dense layer s
o quark jet T
it ]
™ glﬁ,n et T e, pr€[350,400] GeV, anti-kr R=1.5, kr axes
max-pooling MadGraph5_aMC@NLO 2.6.0 + Pythia 8.2.26
x3 107
00 02 04 06 08 10
Hadronic Top Tagging Efficiency
Komiske, Metodiev, Schwartz Moore, Nordstrom, Varma, Fairbairn
(arXiv:1612.01551) (arXiv:1807.04769)

(CNNs here use 4 layers, 64 filters in the conv. layers, and 128 node dense layer.)
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Teaching the machines to learn! ML on MPSoCs & FPGAs

There is a significant benefit to
modern MPSoC devices:

o Execute high-level applications
on CPU/RPU

o Perform low/fixed latency
operations on FPGA

o Offload simple vector/matrix
operations to GPU
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There is a significant benefit to
modern MPSoC devices:

o Execute high-level applications
on CPU/RPU

o Perform low/fixed latency
operations on FPGA

o Offload simple vector/matrix
operations to GPU

And we can execute complex ML
applications using CNN directly on
these devices!
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Teaching the machines to learn! ML on MPSoCs & FPGAs
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Teaching the machines to learn! ML on MPSoCs & FPGAs
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Proof-of-principle with the gFEX Zynq: ResNet-50
Implement ResNet-50 neural network for image classification on our Zynq
UltraScale+ MPSoC for gFEX

— Dramatically larger network!

— Thousands of filters

— ~10 billion operations!!

— merely a Proof-of-principle

34-layer residual

Work conducted by Emily Smith (grad student),
in collaboration with Giordon Stark (UC Santa Cruz)
and two UChicago undergraduates Jack Huang, Ben Warren.
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Proof-of-principle with the gFEX Zyng: ResNet-50

kun ResNetse CONV layers ...
DPU CONV Execution time: 13667us
DPU CONV Performance: 566.6260PS
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® 6 E 0

Image processing at the level of O(ms), expected to decrease to O(us) fo

jet
network and 30 x 30 “images” (i.e. gFEX events).
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Outline

© Summary and conclusions
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Summary

@ Major challenge to measurements and searches in hadronic final states
at the future LHC will be triggering and data management
@ Run 3 trigger systems (gFEX) have unique and novel capabilities as
part of both baseline design and ML on MPSoC & FPGAs
e Co-processor applications using FPGA+CPU+GPU would be very
interesting!

@ Clear opportunities for the Phase II trigger system in terms of
hadronic final state physics, tracking, and more for the trigger system
currently planned

o There is much to be explored in Hardware-based Track Triggers for HLT!
o Strong involvement with scalable systems, hardware accelerators,
and even data management plans for the “offline’’ world may be
essential to realize gains further in physics potential
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© Bonus material
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Appendix

© Bonus material
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gFEX prototypes and production boards

FPGA Upgraded

o Prototype (1 xVU9P + 1xZU19) used
for integration and commissioning at
CERN since Q1 2018.

e Final board (3xVU9P + 1xZU19)
delivered to CERN on 25 June, 2018, 5
years from proposal to delivery!

o Installation ~now, ready for Run 3
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gFEX Multi-Processor System-on-Chip: Zyng Ultrascale+
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D.W. Miller (EFI, Chicago)
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Performance Analysis
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gFEX Virtex 7 Ultrascale+ Processor FPGAs

Base 16nm FPGA Platform PCle Hard IP
(GTY, DDR4, URAM, CMAC) with CCIX TL

et Hard AXI Switch for

Hard Memory Controller = Unified and Flexible Addressing

for HBM

230 GB/s 4GB
Bandwidth per HBM Density per HBM
102410 @ 1.8 GTps (4H x 8Gb)
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gFEX Multi-Processor System-on-Chip: Zyng Ultrascale+
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Zynq Ultrascale+ Processors

ARM
Mali™-400
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Processor and Zynq FPGA comparison for gFEX boards

Processor FPGA Zynq
gFEX version vl v2/v3 V34 | vIN2 v3/iv4
FPGA type VX690T VU160 VU9P | Z7045 ZU19
Logic Cells (M) 0.7 2.0 2.6 0.4 1.1
CLB (M) 0.9 1.9 24 0.3 1.0
Total RAM (Mb) 529 1152 3459 17.6  70.6
DSP slices (K) 3.6 1.6 6.8 0.4 2.0

D.W. Miller (EFI, Chicago)
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Global Event Processor Information

Source

CTP

Source;

Source: .* Rol Distribution

Source.

Zynq MPSoC also available on future Phase II trigger system.
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Industrial neural networks and ResNet-50

From Canziani, Culurciello, Paszke “An Analysis of Deep Neural Network Models for Practical

Applications” (arXiv:1605.07678)

Batch of 1 image

Inception-v4
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Foward time per image [ms]

Operations [G-Ops]

“operations count represent a good estimation of inference time.”

D.W. Miller (EFI, Chicago)
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