Initial-state energy loss in cold QCD matter and the Drell-Yan process

C-J. Naïm

CEA/IRFU/DPhN - LLR/École Polytechnique

GDR 2018 - École Polytechnique

November, 26th 2018 - Palaiseau

Context

Why study pA and πA collisions ? (A = nuclei)

- Lots of measurements from fixed-target to collider experiments
- Study confined nuclear matter
 - Static matter and known nuclear density
 - Important for LHC data interpretation !
- In the future, precise measurements from COMPASS

Study nuclear medium via

- Drell-Yan production
- Hadron production (mostly charmonium)

based on F. Arleo, C-J. Naïm and S. Platchkov "Initial-state energy loss in cold QCD matter and the Drell-Yan process" arXiv:1810.05120

Experimental obervation

Observable : $R(A/B, x_2) = \frac{B}{A} \left(\frac{d\sigma(hA)}{dx_2}\right) \times \left(\frac{d\sigma(hB)}{dx_2}\right)^{-1}$

• Strong suppression in J/ ψ data at all \sqrt{s} from SPS to LHC energies $\sigma(pA \rightarrow J/\psi + X) \equiv \sigma(pp \rightarrow J/\psi + X) \times A^{\alpha}$

Experimental obervation

Observable : $R(A/B, x_2) = \frac{B}{A} \left(\frac{d\sigma(hA)}{dx_2}\right) \times \left(\frac{d\sigma(hB)}{dx_2}\right)^{-1}$

Strong suppression in J/ψ data at all √s from SPS to LHC energies
 Suppression in Drell-Yan data lower compared to J/ψ data
 No scaling as a function of the x₂ momentum fraction

GDR 2018

Nuclear effects

Nuclear Parton Distribution Functions (nPDF)

- EMC effect discovered in 1983 in DIS on nuclear targets
- **2** PDF is modified in nuclei : $f_j^{p/A} \neq f_j^p$
- S Extraction of nPDF ratio $R_j^A = f_j^{p/A}/f_j^p$ with a global fit

Nuclear Parton Distribution Functions (nPDF)

- EMC effect discovered in 1983 in DIS on nuclear targets
- **2** PDF is modified in nuclei : $f_i^{p/A} \neq f_i^p$
- S Extraction of nPDF ratio $R_j^A = f_j^{p/A}/f_j^p$ with a global fit

	EPPS16	nCTEQ15
Neutral current DIS I+A/p+d	\checkmark	\checkmark
Drell-Yan dilepton p+A/p+d	\checkmark	\checkmark
RHIC pions d+Au/p+p	\checkmark	\checkmark
Neutrinos-nucleus DIS	\checkmark	
LHC p+Pb jet data	\checkmark	
LHC p+Pb W and Z bosons data	\checkmark	
Drell-Yan dilepton π A	\checkmark	

Nuclear Parton Distribution Functions (nPDF)

- EMC effect discovered in 1983 in DIS on nuclear targets
- **2** PDF is modified in nuclei : $f_j^{p/A} \neq f_j^p$
- S Extraction of nPDF ratio $R_i^A = f_i^{p/A}/f_i^p$ with a global fit
 - No scaling as a function of x₂ in Drell-Yan and J/ψ data
 → nPDF alone cannot explain the data !
 Morell-Yan data used in the nPDF global fits

Other nuclear effects in hadron-nuclei collision ?

High-energy partons lose energy via soft gluon radiation due to rescattering in the nuclear medium

Energy loss effects

$$\frac{dN^{out}(E)}{dE} = \int_{\epsilon} \mathcal{P}(\epsilon, E) \frac{dN^{in}(E+\epsilon)}{dE}$$

with $\mathcal{P}(E, \epsilon)$: probability distribution in the energy loss given by QCD

GDR 2018

Parton energy loss in hard processes

Drell-Yan process : $hA \rightarrow \ell^+ \ell^- + X$

• Initial state radiation

Hadron production in SIDIS : $e\mathrm{A} \rightarrow e + h + \mathrm{X}$

• Final state radiation

Hadron production in hA : $hA \rightarrow q/g(\rightarrow h') + X$

- Initial state radiation
- Final state radiation
- Interferences initial/final state radiation

Parton energy loss

Energy loss in initial or final state (small formation time $t_f \leq L$))

 $\langle \epsilon \rangle_{LPM} \propto \alpha_s \hat{q} L^2$

- $hA \rightarrow \ell^+ \ell^- + X$ (DY) • $eA \rightarrow e + h + X$ (SIDIS)
- $eA \rightarrow e + h + X$ (SIDIS)

Energy loss in initial/final state (large formation time $t_f \gg L$)

 $\langle\epsilon
angle_{coh}\propto\sqrt{\hat{q}L}/M\cdot E\!\gg\langle\epsilon
angle_{LPM}$

• $hA \rightarrow [Q\bar{Q}(g)]_8 + X$ (Quarkonium)

Transport coefficient : the scattering properties of the medium

$$\hat{q}(x) = \frac{4\pi^2 \alpha_s N_c}{N_c^2 - 1} \rho x G(x) = \hat{q}_0 \left[\frac{10^{-2}}{x} \right]^{0.3}$$

Fit of J/ ψ data (F. Arleo and S. Peigné 1212.0434)

```
E866 - R_{W/Be}(x_F)
```


Extraction of \hat{q}_0 with J/ ψ data: $\hat{q}_0 = [0.07 - 0.09] \text{ GeV}^2/\text{fm}$

Fit of J/ ψ data (F. Arleo and S. Peigné 1212.0434)

NA10 - $R_{Pt/D}(x_F)$

Test universality of the transport coefficient via in Drell-Yan production !

Drell-Yan phenomenology

Goal

- Explore energy loss effects
- Extract transport coefficient of cold QCD matter
- <u>Observables</u> : Drell-Yan suppression in pA and πA collisions

Data analysis of hA collisions at SPS energy

- pA : E906 (\sqrt{s} = 15 GeV) and E866 (\sqrt{s} = 38.9 GeV)
- πA : NA10 (\sqrt{s} = 16.2 GeV) and NA58/COMPASS (\sqrt{s} = 18.9 GeV)

Data analysis - E906 preliminary data

pA collisions

E906

- Drell-Yan data on Carbon (12), Fe (56) and W (184)
- Proton beam at E_{beam} = 120 GeV

•
$$x_2 \in [0.1-0.3]$$

 $R_{pA}^{DY}(W/C, x_F)$

Data analysis - E906 preliminary data

- Clear disagreement with the nPDF expectations !
- Qualitative agreement of energy loss shape and E906
- Strong indication in favour of energy loss in DY data

Data analysis - E866 data

pA collisions

E866

- Drell-Yan data on Be (9), Fe (56) and W (184)
- Proton beam at $E_{beam} = 800 \text{ GeV}$

•
$$x_2 \in [0.01-0.1]$$

 $R_{pA}^{DY}(W/Be, x_F)$

Data analysis - E866 data

- Good agreement with the nPDF expectations (used for the global fit)
- Energy loss effect more important at large x_F
- Good data to extract nPDF but need to take into account energy loss effect (few percent at large x_F)

Violation of QCD factorization in DY process in pA collisions

Universality of nPDF verified in Drell-Yan process ?

 $R_{pA}^{DY} = R_{pA}^{DY}(x_2)$: as a function of the x_2 independent of \sqrt{s}

Scaling as a function of the x_2 :

• Yes in E866/E772 data (same \sqrt{s} !)

• No in E906 data

Indication in favour of violation of QCD factorization in pA in DY

Data analysis - NA10 data

 $\pi^- A$ collisions

 $R_{\pi^-A}^{\mathrm{DY}}(\mathrm{Pt/D}, x_{\mathrm{F}})$

- Clear disagreement with the nPDF expectations and energy loss !
- If both effects are taken into account, more compatible with the data (6-7% normalization uncertainty of NA10 data)

 $\pi^- A$ collisions

NA58/COMPASS

- 2 Drell-Yan data taking (2015 and 2018) on NH₃ (17), W (184)
- Pion beam at $E_{beam} = 190$ GeV

$$\bullet \ x_2 \in [0.15\text{-}0.5]$$

 $R_{\pi^-A}^{DY}(W/NH_3, x_F)$

- Isospin effect important with pion beam (target valence quark distribution)
- Energy loss shows a suppression at large $x_F \rightarrow$ future measurement will constrain \hat{q} !

Conclusion

- Initial-state energy loss plays an important role on Drell-Yan suppression
 - E906 data shows a strong indication in favour of energy loss
 - At SPS energies, important effect !
- **②** Test of universality of transport coefficient extracted with J/ψ
 - Two different energy loss regimes but the same transport coefficient
 - Compatibility with all Drell-Yan data
- Suclear PDF effects on Drell-Yan process
 - Clear disagreement between E906 data and EPPS16 nPDF
 - nPDF effects are not dominant at SPS energies in Drell-Yan
 - Violation of QCD factorization from the comparison of E906 and E866/E772 data

Experiment	Beam energy	nPDF (EPPS16)	Energy loss
E906	120 GeV		Dominant
NA10	140 GeV	Equal	Equal/dominant at large x _F
NA58	190 GeV	Equal	Equal/dominant at largex _F
E866	800 GeV	Dominant except at large x_F	