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Motivations

QCD: theory di�cult to study in the general case

Presence of a hard scale (p⊥, M): possible to use perturbative expansion

One can then study the evolution of parton densities in hadrons:

as a function of Q2: DGLAP

as a function of x: BFKL (dilute) / BK, JIMWLK (dense)
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Our goal here is to study the dense limit of QCD (saturation)
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The LO BK equation

At high energy, DIS can be viewed as a virtual photon (virtuality Q2, �ying
almost along P+) splitting into a qq̄ pair which then interacts eikonally with
the target (transverse size Q2

0, �ying almost along P−)

Kinematics of interest: Q2 � Q2
0 � Λ2

QCD

Leading logarithmic approximation: resum any
number of gluons strongly ordered in longitudinal
momentum (rapidity)

Can look at the evolution

in p−: q−0 � k−n � · · · � k−1 � q−

�η evolution�: resum (αsη)n

in p+: q+ � k+1 � · · · � k+n � q+0
�Y evolution�: resum (αsY )n

The corresponding rapidity intervals are:

η = ln
q−0
q−
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Q2
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1

xBj

Y = ln
q+

q+0
= ln

s

Q2
0

= η + ln
Q2

Q2
0

≡ η + ρ > ρ

....

q+, q−, Q2

k+1 , k
−
1

k+2 , k
−
2

k+3 , k
−
3

k+n , k
−
n

q+0 , q
−
0 , Q

2
0

Note that the di�erence between Y and η is relevant only at NLO and beyond
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The LO BK equation

Resummation of all soft emissions: Balitsky-Kovchegov (BK) equation:

∂Sxy

∂Y
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2
(SxzSzy − Sxy)

Possibility for a parent dipole with size r = |x− y| to emit two daughter dipoles
with sizes |x− z|, |z − y| or to remain intact

One step in the high energy evolution

‘Real corrections’ : the soft gluon crosses the shockwave
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Starting with a given initial condition at Y = 0 (e.g. the simple GBW model

S(0)
xy = e−(x−y)2Q2

0), solve the BK equation numerically to larger rapidities

Can then compute standard DIS structure functions, e.g. FL(xBj, Q
2) =

Q2

4π2αem
σL(xBj, Q

2)

with σL(xBj, Q
2) =

4Ncαem
π2

σ0

2

∑
f

e2f

∫
dz1d

2rQ2z21(1− z1)2K2
0

(
Q
√
z1(1− z1)r2

)
(1− Sr)

4 / 23



The LO BK equation

Numerical solution of LO BK:
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T = 1− S

ρ = ln 1/r2Q2
0

Y = ln 1/x

When we go to larger rapidities: saturation front moving to the right

Saturation scale Qs(Y ): de�ned such that T (Y, r = 1/Qs) ∼ 1/2

Speed of the front: saturation exponent λs =
d lnQ2

s(Y )

dY

Steepness of the front: anomalous dimension γs , T (Y, ρ) ≈ exp[−γs(ρ− λY )]

LO BK: λs ≈ 4.88ᾱs, γs ≈ 0.63. What about NLO?
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NLO corrections

Sources of NLO corrections in this formalism:

Corrections to the hard part
DIS: Chirilli; Beuf

Corrections to the BK evolution
Balitsky, Chirilli

In this talk we focus on BK evolution

At NLO: take into account contributions
where two successive emissions are not
strongly ordered in longitudinal momentum

Numerical solutions show that the NLO corrections to BK are very large and
negative, making the evolution unstable
Lappi, Mäntysaari
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The NLO BK equation in Y

NLO BK for Y evolution as derived by Balitsky, Chirilli:

∂Sxy(Y )

∂Y
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2
[Sxz(Y )Szy(Y )− Sxy(Y )]

− ᾱ2
s

4π

∫
d2z (x−y)2

(x−z)2(z−y)2
ln

(x−z)2

(x−y)2
ln

(y−z)2

(x−y)2
[Sxz(Y )Szy(Y )− Sxy(Y )]

+ ᾱ2
s × �regular� .

The second line is the source of the instability at large daughter dipole sizes:

−1

2
ln

(x− z)2

(x− y)2
ln

(y − z)2

(x− y)2
' −1

2
ln2 (x−z)2

r2
when |z − x| ' |z − y| � |x− y| = r

In this limit one evolution step yields (neglecting the �regular� ᾱ2
s terms)

∆T (Y, r) = ᾱsY r
2Q2

s ln
1

r2Q2
s

(
1− ᾱs

6
ln2 1

r2Q2
s

)
The ᾱ2

s term can be negative and larger in magnitude than LO → instability
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The NLO BK equation in Y

The origin of the instability is con�rmed by numerical calculations
(Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos)
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(�NLO�: LO+second line of NLO BK)

This issue is not surprising: the instability of NLO BFKL was observed long
time ago and solved by resumming double logs to all orders (Salam et al.)
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The NLO BK equation in Y

Physical origin of the instability: BK evolution in Y
enforces ordering in p+ but not in lifetime τ ∼ 1/p−

Need to additionally impose τp > τk ⇔
p+

p2⊥
>
k+

k2⊥
for two successive emissions p, k

Also called �kinematical constraint� (Beuf)

If we worked in η, we would have the opposite
problem: automatic ordering in p− but not in p+
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Time ordering in the DLA

We are interested in the regime of large collinear logarithms

→ First consider the double-logarithmic approximation (DLA)

Only keep powers of ᾱs enhanced by Yρ or ρ2 (ρ = ln(1/r2Q2
0))

At DLA the evolution equation for A ≡ T (Y, r)/r2Q2
0 reads

A(q+, r2) = A(0)(r2) + ᾱs

∫ 1/Q2
0

r2

dz2

z2

∫ q+

q+0

dk+

k+
A(k+, z2)

Notice that k+ can take any value between q+0 (target) and q+ (projectile)

Now imposing time ordering:
q+0
Q2

0

� k+z2 � q+r2,

This becomes: A(q+, r2) = A(0)(r2) + ᾱs

∫ 1/Q2
0

r2

dz2

z2

∫ q+r2/z2

q+0 /z
2Q2

0

dk+

k+
A(k+, z2)
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Time ordering in the DLA

This time-ordered DLA equation can be rewritten using logarithmic variables

(ρ = ln(1/r2Q2
0), ρ1 = ln(1/z2Q2

0), Y = ln(q+/q+0 ), Y1 = ln(k+/q+0 ))

A(Y, ρ) = A(0)(ρ) + ᾱs

∫ ρ

0

dρ1

∫ Y−ρ+ρ1

ρ1

dY1A(Y1, ρ1)

Non-local in rapidity (not a big issue):
∂A(Y, ρ)

∂Y
= ᾱs

∫ ρ

0

dρ1A(Y − ρ+ ρ1, ρ1)

Boundary value problem (more serious): A(0)(ρ) = A(Y = ρ, ρ)

Can be extended to full BK as:

∂Sxy(Y )

∂Y
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2
Θ (Y −ρmin)[Sxz(Y−∆xyz)Szy(Y−∆xyz)−Sxy(Y )]

with ρmin = ln
1

min{(x−y)2, (x−z)2, (y−z)2}Q2
0

, ∆xyz = max

{
0, ln

min{(x−z)2, (z−y)2}
(x−y)2

}
Similar to the collinear-improved BK proposed by Beuf
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Time ordering in the DLA

The non-local DLA equation is mathematically equivalent to a local equation:
(Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos)

A(Y, ρ) = A(0)(ρ) + ᾱs

∫ Y

0

dY1

∫ ρ

0

dρ1KDLA(ρ− ρ1)A(Y1, ρ1) , KDLA(ρ) =
J1

(
2
√
ᾱsρ2

)√
ᾱsρ2

Local in rapidity

An initial value problem: A(0)(ρ) = A(Y = 0, ρ)

Recall that only values Y > ρ are physical (⇔ xBj < 1)

Y < ρ: analytic continuation to the unphysical regime

Y > ρ: coincides with the physical solution

(Unphysical) initial condition A(Y = 0, ρ) = ?

At the DLA level, one can construct A(Y = 0, ρ) from Ā(η = 0, ρ)

e.g. in the GBW model Ā(η = 0, ρ) = 1 and A(Y = 0, ρ) = J0

(
2
√
ᾱsρ2

)
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Collinear-improved BK in Y

This was just at the DLA level. Can be extended to full BK:

∂Sxy

∂Y
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2
KDLA(ρxyz) (SxzSzy − Sxy) , ρ2xyz = ln

(x− z)2

(x− y)2
ln

(y − z)2

(x− y)2

This is collinear-improved BK in Y . Expansion in powers of ᾱs:

∂Sxy

∂Y
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2

(
1− ᾱsρ

2

2
+
ᾱ2
sρ

4

12
− · · ·

)
(SxzSzy − Sxy)

LO BK collinear double logs

KDLA suppresses the large daughter dipoles |z − x| ' |z − y| � |x− y|

In principle rather straightforward procedure:

Choose physical initial condition at η = 0

Construct unphysical initial condition at Y = 0

Solve the equation with KDLA
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Collinear-improved BK in Y

The resummation of the double logs indeed makes the evolution stable:
(Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos)
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Similar results when including the other ᾱ2
s corrections (Lappi, Mäntysaari)

→ Use this equation for phenomenology?

Good �ts to HERA data obtained with collinear-improved BK
(Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos; Albacete)

But not consistent:

Use the �wrong� rapidity interval η instead of Y = η + ρ

Problem with the initial condition
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Collinear-improved BK in Y

At DLA we can construct the initial condition at Y = 0 from the one at η = 0

Not possible (at least exactly) with full BK:
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Straight black line: physical initial condition T̄ (η = 0, ρ) = exp(−ρ)

Colored lines: solution of collinear-improved BK with T (Y = 0, ρ) = exp(−ρ) J0

(
2
√
ᾱsρ2

)
Should match the black line at ρ = Y

In practice: quite large deviations already at small rapidities, gets worse as Y increases
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Collinear-improved BK in η

Because of these issues, choosing Y as the evolution variable is not practical

It turns out that it is much more convenient to only work in η

NLO BK: derived for Y evolution but we can easily change variable to η

At NLO accuracy:

Such a change only a�ects the LO piece. In the O(ᾱ2
s) terms we can

simply replace Y → η

We can use LO BK to evaluate ∂S̄xz(η)/∂η in

Sxz(Y ) = Sxz(η + ρ) ≡ S̄xz

(
η + ln

(x− z)2

(x− y)2

)
' S̄xz(η) + ln

(x− z)2

(x− y)2
∂S̄xz(η)

∂η
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Collinear-improved BK in η

1) Start with non-local equation in Y

∂Sxy(Y )

∂Y
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2
Θ (Y −ρmin)[Sxz(Y −∆xyz)Szy(Y −∆xyz)−Sxy(Y )]

2) Change variable from Y to η = Y − ρ

3) Extract O(ᾱ2
s) contribution and subtract it

4) Add ᾱ2
s corrections from Balitsky, Chirilli

∂S̄xy(η)

∂η
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2
Θ(η−δzxy)Θ(η−δzyx)

[
S̄xz(η−δzxy)S̄zy(η−δzyx)−S̄xy(η)

]
− ᾱ2

s

4π

∫
d2z (x−y)2

(x−z)2(z−y)2
ln

(x−z)2

(x−y)2
ln

(y−z)2

(x−y)2
[
S̄xz(η)S̄zy(η)− S̄xy(η)

]
+

ᾱ2
s

2π2

∫
d2z d2u (x−y)2

(x−u)2(u−z)2(z−y)2

[
ln

(u−y)2

(x−y)2
+ δuyx

]
S̄xu(η)

[
S̄uz(η)S̄zy(η)− S̄uy(η)

]
+ ᾱ2

s × �regular�
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Collinear-improved BK in η

1) Start with non-local equation in Y

∂Sxy(Y )

∂Y
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2
Θ (Y −ρmin)[Sxz(Y −∆xyz)Szy(Y −∆xyz)−Sxy(Y )]

2) Change variable from Y to η = Y − ρ

3) Extract O(ᾱ2
s) contribution and subtract it

4) Add ᾱ2
s corrections from Balitsky, Chirilli

∂S̄xy(η)

∂η
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2
Θ(η−δzxy)Θ(η−δzyx)

[
S̄xz(η−δzxy)S̄zy(η−δzyx)−S̄xy(η)

]
− ᾱ2

s

4π

∫
d2z (x−y)2

(x−z)2(z−y)2
ln

(x−z)2

(x−y)2
ln

(y−z)2

(x−y)2
[
S̄xz(η)S̄zy(η)− S̄xy(η)

]
+

ᾱ2
s

2π2

∫
d2z d2u (x−y)2

(x−u)2(u−z)2(z−y)2

[
ln

(u−y)2

(x−y)2
+ δuyx

]
S̄xu(η)

[
S̄uz(η)S̄zy(η)− S̄uy(η)

]
+ ᾱ2

s × �regular�

double logs in
Balitsky-Chirilli

change Y → η rapidity shift
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Collinear-improved BK in η

This collinear-improved NLO BK in η is our main result

∂S̄xy(η)

∂η
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2
Θ(η−δzxy)Θ(η−δzyx)

[
S̄xz(η−δzxy)S̄zy(η−δzyx)−S̄xy(η)

]
− ᾱ2

s

4π

∫
d2z (x−y)2

(x−z)2(z−y)2
ln

(x−z)2

(x−y)2
ln

(y−z)2

(x−y)2
[
S̄xz(η)S̄zy(η)− S̄xy(η)

]
+

ᾱ2
s

2π2

∫
d2z d2u (x−y)2

(x−u)2(u−z)2(z−y)2

[
ln

(u−y)2

(x−y)2
+ δuyx

]
S̄xu(η)

[
S̄uz(η)S̄zy(η)− S̄uy(η)

]
+ ᾱ2

s × �regular�,

By construction:

Exactly matches the NLO BK equation when expanded to O(ᾱ2
s)

Can be solved knowing the initial condition at η = 0

Free of large double logs

However it is di�cult to solve in practice: cancellation of double logs between
the second and third terms + all di�culties with �pure� NLO BK
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Numerical results

Because of the di�culties related to solving the full NLO equation, we don't
consider here the ᾱ2

s terms (which are now expected to be truly NLO)

We are left with the following equation:

∂S̄xy(η)

∂η
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2
Θ(η−δzxy)Θ(η−δzyx)

[
S̄xz(η−δzxy)S̄zy(η−δzyx)−S̄xy(η)

]

Contains LO BK evolution + resummation of double logs to all orders

Not much more di�cult to solve than standard BK (initial condition problem)

Only di�erence: shifted rapidity arguments
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Numerical results

Saturation exponent as a function of ᾱsη:
(LO: no ᾱs dependence for this quantity)
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ᾱ = 0.25

The non-locality slows down the evolution compared to LO

The deviation compared to LO is signi�cant but not huge, increases with ᾱs
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Numerical results

Anomalous dimension as a function of η (ᾱs = 0.25):

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50

LO

TO

γ

η

Asymptotically the anomalous dimension of the non-local equation is
smaller than at LO

But no signi�cant di�erence at rapidities relevant for HERA data (η . 10)
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Conclusions

The large double logarithms appearing in the NLO BK equation must be
resummed to avoid instabilities

Can be formally done in Y , but not practical

We propose an equation in η which is free of double logs and matches full
NLO BK when expanded to O(ᾱ2

s)

LO BK with resummation of double logs: stable, slower evolution than LO

What remains to be done:

Add running coupling

Resum remaining, single (DGLAP) logarithms
Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos

Implement �regular� NLO corrections
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