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> One of the most celebrated properties of QCD is Asymptotic
Freedom, which means that gs(E) << 1 for E >>1 GeV Motivation

> Allows for a weak coupling expansion in the high energy regime

> Perturbation theory is a very useful tool in the UV

> Lowering the energy scale, the coupling constant eventually diverges
in the Landau pole

» This is usually regarded as the onset of non-perturbative QCD and

one refers to non-pert. methods such as
> Lattice QCD
» Dyson-Schwinger Equations
» Functional Renormalization Group
> However, perturbation theory is based on the Fadeev-Popov
Lagrangian because of the necessity to gauge fix

> While the FP Lagrangian is aligned with QCD in the UV, it is
well-known that this association breaks down in the IR




Motivation

1. In all covariant gauge fixings, the FP procedure is non-complete in
the IR and leaves a residual ambiguity due to the presence of Gribov Motivation
copies

o

Landau gauge gluon propagator - decoupling behavior

i)

So clearly, in order to describe IR QCD, the FP Lagrangian is not enough

and needs to be modified!




CF-Model as an effective theory Curei-Ferrati
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1. On a lattice, one picks one copy by hand for each gauge configuration Motivation
— Minimal Landau gauge

2. restrict the space of gauge transformations to the first Gribov region
— (refined) Gribov-Zwanziger action

3. modify the theory by the addition of an operator to obtain an
effective model — Curci-Ferrari Model

S:L{i<FEU)2+&(@+M+M’YO)¢}+ Srp +/g;{§m (A”) }

Landau

» minimal effective theory in the IR while keeping the UV fixed
> gluon mass term softly breaks BRST symmetry

> CF is still perturbatively renormalizable




RG-flow in CF and Pert. Theory

> allows for infrared safe RG flows without a Landau pole permitting a
perturbative treatment at all momentum scales down to the deep IR

Landau pole

Infrared safe

from
lattice data correspond to

and

Perturbation
theory in CF




Curci-Ferrari Model

> Superficially, there is one extra parameter in the CF Model

> In principle, it should be fixed intrinsically from the theory itself
(Gribov copies, Aqcp ---)

> In practice, fix the gluon mass by fitting the calculated gluon
propagator against corresponding Lattice data and then keep it fixed
in any further calculation.

\ one-loop gluon propagator

‘\\ against lattice data

G(p)

o 1

0

> The optimal value is around 500 MeV

> Many more correlation functions have been computed in reasonable
qualitative and quantitative agreement with lattice findings




Phase diagram & Columbia plot
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Several other approaches on the market:
> Lattice QCD
» Dyson Schwinger Equations
> Functional Renormalization Group
> Variational Approach
> Gribov-Zwanziger Action
> Matrix-, QM-, NJL-Model,...




At the Yang-Mills point
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Polyakov loops as order parameters Curei-Ferrari
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At the YM point, a relevant order parameter for the deconfinement
transition is the (anti-)Polyakov loop. It is related to the free energy Fy
necessary to bring a quark into a ”"bath” of gluons.

1 B _ _
l= gtr (Pexp(ig/o d¢A8t”)>~e’BFq I~ePla
Yang-Mills

Hence

£ =0 < Fy = 0o <> confinement £+ 0 <> Fy < 0o <> deconfinement

imposed by center symmetry

— It is thus very important to work in a choice of gauge which does not
explicitly break center symmetry!




Landau-DeWitt gauge

a _ Aa a
Au = Au +ay,
In practice, at each temperature, the background field AZ is chosen such
that the expectation value (af,) vanishes in the limit of vanishing sources.
This corresponds to finding the absolute minimum of T'[A] =T[4, (a) = 0],
where I'[4, (a)] is the effective action for {(a) in the presence of A.

Seek the minima in the subspace of configurations A that respect the
symmetries of the system at finite temperature.
— One restricts to temporal and homogenous backgrounds:

A}L(Tv X) = AOCS[,LO

— functional T'[A] reduces to an effective potential V(Ag) for the
constant matrix field Ag.

One can always rotate this matrix Ay into
the Cartan subalgebra:

T3 T8
A A Yang-Mills | R 0
BgAo =r3 "> +rs p=0 R0
2 2 peilR R R
nelR R R

Then V(Ag) reduces to a function of 2
components V(rs,rg).
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IR QCD from

Yang-Mills Two-loop Expansion

V(rs,rg) = gTan(D2+m2)—%Tan(D2)+

Yang-Mills




Yang-Mills Results

V(T, rs,0)/T*

transition temperatures in MeV:

SU(3) SU(2)
One-loop 185 237

Two-loop 254 284
\/\/ Lattice 270 295

0 - 4r/3 2n

Moreover some worrisome thermodynamic curiosities present at one-loop
order disappear upon taking into account the two-loop corrections, eg.
negative entropy and pressure.
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Polyakov loops as order parameters

Yang-Mills:

At the YM point, a relevant order parameter for the deconfinement
transition is the (anti-)Polyakov loop. It is related to the free energy Fy
necessary to bring a quark into a ”bath” of gluons.

1 B ~ _
L= gtr (Pexp(igf dTAgta)>~e_f8F‘1 Z~ePra
0
Hence

£ =0+« Fy = 00 «<> confinement £#0 <« Fy < 0o «> deconfinement

Unquenched:

Introducing quarks, center symmetry is explicitly broken. For heavy
quarks, this breaking is ”soft”, thus:

£~ 0 < Fy ~ oo < confinement £#0 < Fy < oo <> deconfinement
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Heavy Quark Two-loop Expansion

V(rs,rg) = —TrLn (;‘3+M+M’Yo—ig'yoﬁktk)

+gTan (D2 + m2) - %Tan(DQ) +




Vanishing chemical potential

1,

| _ Mo(Ny)
1 0% ‘\\ Ny = Tc(Nf)
09 T ] O(l) Mypare = Mren.
0.9 0.95 0(92): Mbare = Z]\/I Mren. + CM
e

— hard to compare between different approaches!

However, Zps, Cps are independent of Ny at O(g?) , and observing

To(Nj =3) - To(Nj = 1)

~ 0.2%
Te(Ny=1)
allows for:
if Cpr#0
if Cpr=0 P A
Ryt Ry, » Mo(N%)/Mo(Nf) vy = vy I
N} Ny B Mc f c f Ny = Iy

is scheme indep. & comparable to other approaches up to higher order
corrections.
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Vanishing chemical potential Curdi-Ferran:

errari

1,

Ry = Mc(Ny)
\ Ny = oy
Lt O i Te(N7)
g Ry, - R
--------- Yy, = ————
09 f R - Ry
09 0.95
1—e’%
Ry, | Nj=1 N;j=2 N;j=3] /R Rs[Ri | Vs |
1-loop 6.74 7.59 8.07 1.13 1.20 1.58
2-loop 7.53 8.40 8.90 1.12 1.18 1.57
Lattice [1] | 7.23 792 833 | 110 115 | 1.50
DSE [2] 1.42 1.83 2.04 1.29 1.43 1.51
Matrix [3] 8.04 8.85 9.33 1.10 1.16 1.59

— The overall good agreement seems to suggest that the underlying

dynamics is well-described within perturbation theory.
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Imaginary chemical potential p = ipu; Curci-Ferrari

T/m
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The vicinity of the tricritical point is approximately described by the mean
field scaling behavior
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Imaginary chemical potential u = iy, Curei-Ferrati
==
=l
85 =] M. (z) ~6.939 + 1.888 2%/5
= T.
M g0 Pl
T f Mc(Ny,pi) By (pi)
k (@ Mc(Nyp=1,p)  Ri(mi)
7.0

at u = pii=1im/3

l RNf(ﬂ'/g) ‘ Nf:I Nf:2 Nf:3 ‘ Ra/R; R3/Ry ‘ Y3 ‘

1-loop 4.74 5.63 6.15 1.19 1.30 1.57
2-loop 5.47 6.41 6.94 1.17 1.27 1.57
Lattice [1] 5.56 6.25 6.66 1.12 1.20 1.59
DSE [2] 0.41 0.85 1.11 2.07 2.70 1.59
Matrix [3] 5.00 5.90 6.40 1.18 1.28 1.56




. . IR QCD from
Real chemical potential Curci-Ferrari
> V(rs,rs) €C Jan Maelger
> V(£,0)eC —  physical point # absolute minimum
Common fix: V = ReV+iIat¥Z — No explicit breaking of charge
conjugation, ie rg =0 or g=q !

Instead, we can continue the rg-component via rg — irg
£ 0&¢ € R and indep.
Then
> V(Tg,Tg) eC— V(T3,i7‘8) eR
> min V(r3,rg) — saddle point in R x iR
> residual ambiguity: Wich saddle = physical point? Heavy Quarks
— Choose convention to pick the lowest saddle! (well-motivated
around p ~ 0)

20 60 80 100 120
X

Aj{c (z) ~6.939+1.8882%5  z=(n/3)2 + (u/T:)? = (n/3)? = (ui/T:)?
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Quark Propagator as Order Parameter orrari

The light quark regime is governed by chiral symmetry breaking and
restoration. An appropriate order parameter in the chiral limit, My,.c = 0,
is the quark condensate or the mass function B(Q) of the quark
propagator S(Q) = (¢(Q)q(0)), where

B(Q) # 0 < broken x B(Q) =0 < restored x

An integral equation for the full quark propagator is given by the
resummed rainbow-laddder equation:

Light Quarks

STHP) = =il + Mpare + GRare fQ VG (P = Q)S(Q)w




IR QCD from

Localisation and other Approximations T e

Jan Maelger

> After invoking parity, charge and complex conjugation, the most
general form of the propagator is

STHP) = B(P)1-ivAs(P)—iv-pAs(P) —ivoy - pA:(P)

consider trivial: 71'}6

Light Quarks

> Localise the equation and consider B(P) = B(po,0)

> analytically continue in the frequency qo

> Finally, we fix the gluon mass to 500 MeV and phenomenologically
choose the coupling such we have a chiral symmetry breaking
solution of mass 300 MeV at zero temperature.
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Results in the chiral limit - preliminary Curci-Ferrari
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Results for non-zero bare mass - preliminary Curci-Ferrari
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Conclusion & Outlook oo ot
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CONCLUSION:

> The heavy quark phase diagram (+YM) is qualitatively
well-described by a simple CF one-loop calculation

» Two-loop corrections lead to quantitative improvements

> A localised rainbow-ladder analysis within CF is able to capture the
physics underlying the light quark regime

> suggests that the description of the phase diagram within the CF
model is robust
Conclusion &
OUTLOOK: Outlook
> More refined description of the chiral sector (flavor blindness, ...)
> Off equilibrium thermodynamics?

> Real time observables?

> e
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Call in the reinforcements!!




Explicit breaking of charge-conjugation in e rom
Polyakov loops lan Maslger
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Curci-Ferrari: Motivation

To doubt everything, or, to believe everything, are two equally convenient

solutions; both dispense with the necessity of reflection.

Henri Poincaré

Curci-Ferrari
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Conclusion &
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loq(f1) and Fyq(ft)
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> Trace {4, and Fy,g as functions of i = —p Outlook

— ¢ and F,; change monotony, but £ and Fz don’t! Then 0,0
increase together towards 1

> ”Free energy must be strictly monotonically decreasing as a function
of chemical potential” —> contradicts £ = e #Fa ?

> Interpretation £ ~ e #4 is saved by a simple thermodynamic
argument if the charge of the bath at i =0 is not zero




Pure Thermal bath IR QC Drholvu

3 C\ *ﬁ free energy of the bath:
‘ : F =-Tlntr exp{-8(H - 4Q)}
| “0 @ is the Dbaryonic charge
? P e and fi = —p

One easily obtains that

oF )
op = (@) and

=3 <(Q - (Q))Q) >0. Conclusion &

Outlook

Now, in absence of any external sources , the thermal bath is
charge-conjugation invariant for i = 0:

(Q)a=0=0

— for any /i > 0: (Q) >0 and thus aF <0, i.e. the free energy of the bath

is a decreasing function of [
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Thermal bath with charged test source orrari

ﬂ‘/ &C\ Q“ from before:

(]
? '{U*/ )‘ 8F=—(Q) Q)
L Wa 1= Of op

=B{(Q-(Q)*) >0

In the presence of a static quark (q) or antiquark (g) , charge-conjugation
invariance is broken s.t.:

(@ga=0<0  (Q)g,p-0>0
The equations above then imply that

Conclusion &

Vﬂ > 0, (Q)q > 07 Outlook

while there exists a certain fig > 0 such that,

Vie[0,/0], (Q)g<0 and YA> o, (Q)g>0.

06
10
05
05
Therefore £ 04 A o
F5 is monotonously decreasing £ )
& . 0070304708 08 10
for fi > 0, while Z 02
Fy first increases and then decreases 01

—u/m



Thermal bath with charged test source
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Then

0 o e B(Fq-F) 7 e B(Fa-F)

are found by the free energy differences wrt to the bath without any
external source.
oF _ |

o
which explains the different monotony.

Since both are dominated for small i by either Fy or Fg,

a=0’

A(Qq) and A(Qg) should approach 0 at large fi, which we also observe.

Curci-Ferrari
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Conclusion &
Outlook
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