Towards the QCD phase diagram from the Curci-Ferrari Model

Jan Maelger^{1,2}

In collaboration with: U.Reinosa¹ and J.Serreau²

- 1. Centre de Physique Théorique, Ecole Polytechnique
- 2. AstroParticule et Cosmologie, Univ. Paris 7 Diderot

GDR QCD 2018, November 28

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

Curci-Ferrari Model

Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot

Yang-Mills Heavy Quarks Light Quarks

Conclusion & Outlook

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks

Motivation

- One of the most celebrated properties of QCD is Asymptotic Freedom, which means that $g_s(E) \ll 1$ for $E \gg 1$ GeV
- Allows for a weak coupling expansion in the high energy regime
- Perturbation theory is a very useful tool in the UV
- Lowering the energy scale, the coupling constant eventually diverges in the Landau pole
- This is usually regarded as the onset of non-perturbative QCD and one refers to non-pert. methods such as
 - Lattice QCD
 - Dyson-Schwinger Equations
 - Functional Renormalization Group
- However, perturbation theory is based on the Fadeev-Popov Lagrangian because of the necessity to gauge fix
- While the FP Lagrangian is aligned with QCD in the UV, it is well-known that this association breaks down in the IR

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks

Light Quarks

Motivation

- 1. In all covariant gauge fixings, the FP procedure is non-complete in the IR and leaves a residual ambiguity due to the presence of Gribov copies [Singer (1978)]
- 2. Landau gauge gluon propagator decoupling behavior

So clearly, in order to describe IR QCD, the FP Lagrangian is not enough and needs to be modified!

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

CF-Model as an effective theory

- 1. On a lattice, one picks one copy by hand for each gauge configuration \longrightarrow Minimal Landau gauge
- 2. restrict the space of gauge transformations to the first Gribov region \rightarrow (refined) Gribov-Zwanziger action
- 3. modify the theory by the addition of an operator to obtain an effective model → Curci-Ferrari Model

$$S = \int_x \left\{ \frac{1}{4} (F^a_{\mu\nu})^2 + \bar{\psi} (\mathcal{P} + M + \mu\gamma_0) \psi \right\} + \underbrace{S_{FP}}_{\text{Landau}} + \int_x \left\{ \frac{1}{2} m^2 (A^a_\mu)^2 \right\}$$

- minimal effective theory in the IR while keeping the UV fixed
- gluon mass term softly breaks BRST symmetry
- CF is still perturbatively renormalizable

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

RG-flow in CF and Pert. Theory

 allows for infrared safe RG flows without a Landau pole permitting a perturbative treatment at all momentum scales down to the deep IR [Tissier, Wschebor (2011)]

from [Reinosa, Serreau, Tissier, Wschebor (2017)] lattice data correspond to [Dudal, Oliveira, Vandersickel (2010)] and [Bogolubsky, Ilgenfritz, M.-Preussker, Sternbeck (2009)]

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

Curci-Ferrari Model

- Superficially, there is one extra parameter in the CF Model
- In principle, it should be fixed intrinsically from the theory itself (Gribov copies, Λ_{QCD} ...)
- In practice, fix the gluon mass by fitting the calculated gluon propagator against corresponding Lattice data and then keep it fixed in any further calculation.

one-loop gluon propagator [Tissier, Wschebor (2011)] against lattice data [Bogolubsky et al. (2009), Dudal, Oliveira, Vandersickel (2010)]

- The optimal value is around 500 MeV
- Many more correlation functions have been computed in reasonable qualitative and quantitative agreement with lattice findings
 [Pelàez, Reinosa, Serreau, Tissier, Tresmontant, Wschebor]

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

Phase diagram & Columbia plot

Several other approaches on the market:

- Lattice QCD [de Forcrand, Philipsen, Rodriguez-Quintero, Mendes, ...]
- Dyson Schwinger Equations [Alkofer, Fischer, Huber, ...]
- Functional Renormalization Group [Pawlowski, Mitter, Schaefer...]
- Variational Approach [Reinhardt, Quandt, ...]
- Gribov-Zwanziger Action [Dudal, Oliveira, Zwanziger...]
- Matrix-, QM-, NJL-Model,... [Pisarski, Dumitru, Schaffner-B., Stiele, ...]

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot

Yang-Mills Heavy Quarks Light Quarks

At the Yang-Mills point

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot **Yang-Mills**

Heavy Quarks Light Quarks

Conclusion & Outlook

Phys. Lett. B 742 (2015) 61

Phys. Rev. D 91 (2015) 045035

Phys. Rev. D 93 (2016) 105002 all [Reinosa, Serreau, Tissier, Wschebor]

Polyakov loops as order parameters

At the YM point, a relevant order parameter for the deconfinement transition is the (anti-)Polyakov loop. It is related to the free energy F_q necessary to bring a quark into a "bath" of gluons.

$$\ell \equiv \frac{1}{3} \mathrm{tr} \left\langle P \exp \left(ig \int_0^\beta d\tau A_0^a t^a \right) \right\rangle \sim e^{-\beta F_q} \qquad \bar{\ell} \sim e^{-\beta F_{\bar{q}}}$$

Hence

 $\underbrace{\ell = 0 \leftrightarrow F_q = \infty \leftrightarrow \text{confinement}}_{\ell \neq 0} \qquad \ell \neq 0 \leftrightarrow F_q < \infty \leftrightarrow \text{deconfinement}$

imposed by center symmetry

 \rightarrow It is thus very important to work in a choice of gauge which does <u>not</u> explicitly break center symmetry!

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks

Landau-DeWitt gauge [Braun, Pawlowski, Gies (2010)]

$$A^a_\mu = \bar{A}^a_\mu + a^a_\mu$$

In practice, at each temperature, the background field \bar{A}^a_μ is chosen such that the expectation value $\langle a^a_\mu \rangle$ vanishes in the limit of vanishing sources.

This corresponds to finding the absolute minimum of $\tilde{\Gamma}[\bar{A}] \equiv \Gamma[\bar{A}, \langle a \rangle = 0]$, where $\Gamma[\bar{A}, \langle a \rangle]$ is the effective action for $\langle a \rangle$ in the presence of \bar{A} .

Seek the minima in the subspace of configurations \bar{A} that respect the symmetries of the system at finite temperature.

 \longrightarrow One restricts to temporal and homogenous backgrounds:

$$\bar{A}_{\mu}(\tau, \mathbf{x}) = \bar{A}_0 \delta_{\mu 0}$$

 \rightarrow functional $\tilde{\Gamma}[\bar{A}]$ reduces to an effective potential $V(\bar{A}_0)$ for the constant matrix field \bar{A}_0 .

One can always rotate this matrix \bar{A}_0 into the Cartan subalgebra:

$$\beta g \bar{A}_0 = r_3 \frac{\lambda_3}{2} + r_8 \frac{\lambda_8}{2}$$

Then $V(\bar{A}_0)$ reduces to a function of 2 components $V(r_3, r_8)$.

	r_3	r_8
Yang-Mills	R	0
$\mu = 0$	\mathbb{R}	0
$\mu \in i \mathbb{R}$	\mathbb{R}	\mathbb{R}
$\mu \in \mathbb{R}$	\mathbb{R}	$i\mathbb{R}$

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot

Yang-Mills Heavy Quarks Light Quarks

Yang-Mills Two-loop Expansion

$$V(r_3, r_8) = \frac{3}{2} \operatorname{Tr} \operatorname{Ln} \left(\bar{D}^2 + m^2 \right) - \frac{1}{2} \operatorname{Tr} \operatorname{Ln} \left(\bar{D}^2 \right) + \frac{1}{2} \operatorname{Tr} \operatorname{Tr} \operatorname{Ln} \left($$

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills

Heavy Quarks Light Quarks

Yang-Mills Results

 $V(T, r_3, 0)/T^4$

	SU(3)	SU(2)
One-loop	185	237
Two-loop	254	284
Lattice	270	295

transition temperatures in MeV:

Moreover some worrisome thermodynamic curiosities present at one-loop order disappear upon taking into account the two-loop corrections, eg. negative entropy and pressure.

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot **Yang-Mills** Heavy Quarks

Heavy Quarks

Phys. Rev. D **92** (2015) 025021 [Reinosa, Serreau, Tissier] Phys. Rev. D **97** (2018) 074027 [Maelger, Reinosa, Serreau]

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks

Polyakov loops as order parameters

Yang-Mills:

At the YM point, a relevant order parameter for the deconfinement transition is the (anti-)Polyakov loop. It is related to the free energy F_q necessary to bring a quark into a "bath" of gluons.

$$\ell \equiv \frac{1}{3} \mathrm{tr} \left\langle P \exp \left(ig \int_0^\beta d\tau A_0^a t^a \right) \right\rangle \sim e^{-\beta F_q} \qquad \bar{\ell} \sim e^{-\beta F_{\bar{q}}}$$

Hence

$$\ell = 0 \leftrightarrow F_q = \infty \leftrightarrow \text{confinement} \qquad \ell \neq 0 \leftrightarrow F_q < \infty \leftrightarrow \text{deconfinement}$$

Unquenched:

Introducing quarks, center symmetry is explicitly broken. For heavy quarks, this breaking is "soft", thus:

 $\ell \approx 0 \leftrightarrow F_q \approx \infty \leftrightarrow \text{confinement} \qquad \ell \not\approx 0 \leftrightarrow F_q < \infty \leftrightarrow \text{deconfinement}$

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

Heavy Quark Two-loop Expansion

$$V(r_3, r_8) = -\operatorname{Tr} \operatorname{Ln} \left(\partial \!\!\!/ + M + \mu \gamma_0 - ig \gamma_0 \bar{A}^k t^k \right) \\ + \frac{3}{2} \operatorname{Tr} \operatorname{Ln} \left(\bar{D}^2 + m^2 \right) - \frac{1}{2} \operatorname{Tr} \operatorname{Ln} \left(\bar{D}^2 \right) + \frac{3}{2} \operatorname{Tr} \operatorname{Tr} \operatorname{Ln} \left(\bar{D}^2 \right) + \frac{3}{2} \operatorname{Tr} \operatorname{Ln} \left(\bar{D}^2 \right$$

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills **Heavy Quarks** Light Quarks

Vanishing chemical potential

 \longrightarrow hard to compare between different approaches! However, Z_M, C_M are independent of N_f at $\mathcal{O}(g^2)$, and observing

$$\frac{T_c(N_f=3) - T_c(N_f=1)}{T_c(N_f=1)} \approx 0.2\%$$

allows for:

$$\underbrace{\frac{\operatorname{if} C_M = 0}{R_{N_f'}/R_{N_f} \approx M_c(N_f')/M_c(N_f)}}_{\operatorname{if} C_M \neq 0} \qquad \underbrace{\frac{\operatorname{if} C_M \neq 0}{Y_{N_f} \equiv \frac{R_{N_f} - R_1}{R_2 - R_1}}}$$

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills **Heavy Quarks** Light Quarks

Vanishing chemical potential

$$\begin{split} R_{N_f} &\equiv \frac{M_c(N_f)}{T_c(N_f)} \\ Y_{N_f} &\equiv \frac{R_{N_f} - R_1}{R_2 - R_1} \end{split}$$

R_{N_f}	$N_f = 1$	N_f = 2	N_f = 3	R_2/R_1	R_{3}/R_{1}	Y_3
1-loop	6.74	7.59	8.07	1.13	1.20	1.58
2-loop	7.53	8.40	8.90	1.12	1.18	1.57
Lattice [1]	7.23	7.92	8.33	1.10	1.15	1.59
DSE [2]	1.42	1.83	2.04	1.29	1.43	1.51
Matrix [3]	8.04	8.85	9.33	1.10	1.16	1.59

 \rightarrow The overall good agreement seems to suggest that the underlying dynamics is well-described within perturbation theory.

- [1] M. Fromm, J. Langelage, S. Lottini and O. Philipsen (2012)
- [2] C. S. Fischer, J. Luecker and J. M. Pawlowski (2015)
- [3] K. Kashiwa, R. D. Pisarski and V. V. Skokov (2012) and the second se

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills **Heavy Quarks** Light Quarks

Imaginary chemical potential $\mu = i\mu_i$

The vicinity of the tricritical point is approximately described by the mean field scaling behavior

$$\frac{M_c(\mu_i)}{T_c(\mu_i)} = \frac{M_{\text{tric.}}}{T_{\text{tric.}}} + K \left[\left(\frac{\pi}{3}\right)^2 - \left(\frac{\mu_i}{T_c}\right)^2 \right]^{\frac{1}{4}}$$

[de Forcrand, Philipsen (2010); Fischer, Luecker, Pawlowski (2015)]

 $x \equiv (\pi/3)^2 + (\mu/T_c)^2 = (\pi/3)^2 - (\mu_i/T_c)^2 \rightarrow (\pi/3)^2 - (\mu_i/T_c)^2 \rightarrow (\pi/3)^2 - (\pi/3)^2 -$

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills **Heavy Quarks** Light Quarks

Conclusion & Outlook

19/34

Imaginary chemical potential $\mu = i\mu_i$

$R_{N_f}(\pi/3)$	$N_f = 1$	$N_f = 2$	$N_{f} = 3$	R_2/R_1	R_{3}/R_{1}	Y_3
1-loop	4.74	5.63	6.15	1.19	1.30	1.57
2-loop	5.47	6.41	6.94	1.17	1.27	1.57
Lattice [1]	5.56	6.25	6.66	1.12	1.20	1.59
DSE [2]	0.41	0.85	1.11	2.07	2.70	1.59
Matrix [3]	5.00	5.90	6.40	1.18	1.28	1.56

[1] Fromm et al. (2012), [2] Fischer et al. (2015), [3] Kashiwa et al. (2012)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへの

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills **Heavy Quarks** Light Quarks

Real chemical potential

- ▶ $V(r_{3,}r_8) \in \mathbb{C}$
- $V(\ell, \bar{\ell}) \in \mathbb{C}$ \longrightarrow physical point $\hat{\neq}$ absolute minimum

Common fix: $V = \operatorname{Re} V + \lambda \operatorname{Im} V \rightarrow \operatorname{No}$ explicit breaking of charge conjugation, ie $r_8 \equiv 0$ or $q = \hat{q}$!

Instead, we can continue the r_8 -component via $r_8 \rightarrow ir_8$

 $\label{eq:linear} \hat{=} \; \ell \& \bar{\ell} \in \mathbb{R} \text{ and indep. [Dumitru, Pisarski, Zschiesche (2005)]}$ Then

- $\blacktriangleright V(r_3, r_8) \in \mathbb{C} \longrightarrow V(r_3, ir_8) \in \mathbb{R}$
- min $V(r_3, r_8) \longrightarrow$ saddle point in $\mathbb{R} \times i\mathbb{R}$
- residual ambiguity: Wich saddle ^ˆ= physical point?
 → Choose convention to pick the lowest saddle! (well-motivated around μ ≈ 0)

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills **Heavy Quarks** Light Quarks

Light Quarks

Preliminary/ In preparation [Maelger, Reinosa, Serreau]

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

Quark Propagator as Order Parameter

The light quark regime is governed by chiral symmetry breaking and restoration. An appropriate order parameter in the chiral limit, $M_{\text{bare}} = 0$, is the quark condensate or the mass function B(Q) of the quark propagator $S(Q) = \langle q(Q)\bar{q}(0) \rangle$, where

 $B(Q) \neq 0 \Leftrightarrow \operatorname{broken} \chi \qquad B(Q) = 0 \Leftrightarrow \operatorname{restored} \chi$

An integral equation for the full quark propagator is given by the resummed rainbow-laddder equation:

$$S^{-1}(P) = -i \not P + M_{\text{bare}} + g_{\text{bare}}^2 \int_{\hat{Q}} \gamma_{\mu} G_{\mu\nu}(P - Q) S(Q) \gamma_{\nu}$$

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

Localisation and other Approximations

• After invoking parity, charge and complex conjugation, the most general form of the propagator is

$$S^{-1}(P) = B(P)\mathbf{1} \underbrace{-i\gamma_0 A_s(P) - i\underline{\gamma} \cdot \underline{\hat{p}} A_v(P) - i\gamma_0 \underline{\gamma} \cdot \underline{\hat{p}} A_t(P)}_{\underbrace{-i\gamma_0 A_s(P) - i\underline{\gamma} \cdot \underline{\hat{p}} A_t(P)}_{\underline{-i\gamma_0 A_s(P) - i\underline{\gamma} - i\underline{\beta} A_t(P)}_{\underline{-i\gamma_0 A_s(P) - i\underline{\beta} A_t(P)}_{\underline{-i\gamma_0 A_$$

consider trivial: $-i \not \! P$

- Localise the equation and consider $B(P) = B(p_0, 0)$
- analytically continue in the frequency q_0
- Finally, we fix the gluon mass to 500 MeV and phenomenologically choose the coupling such we have a chiral symmetry breaking solution of mass 300 MeV at zero temperature.

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

Results in the chiral limit - preliminary

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

Results for non-zero bare mass - preliminary

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

Conclusion & Outlook

CONCLUSION:

- ▶ The heavy quark phase diagram (+YM) is qualitatively well-described by a simple CF one-loop calculation
- Two-loop corrections lead to quantitative improvements
- A localised rainbow-ladder analysis within CF is able to capture the physics underlying the light quark regime
- suggests that the description of the phase diagram within the CF model is robust

OUTLOOK:

- ▶ More refined description of the chiral sector (flavor blindness, ...)
- Off equilibrium thermodynamics?
- Real time observables?

۱

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks

Backup slides

Call in the reinforcements!!

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

 $\begin{array}{l} {\rm Conclusion} \ \& \\ {\rm Outlook} \end{array}$

Explicit breaking of charge-conjugation in Polyakov loops

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

Conclusion & Outlook

・ロト ・母 ト ・ヨト ・ヨー シュウ・

Curci-Ferrari: Motivation

To doubt everything, or, to believe everything, are two equally convenient solutions; both dispense with the necessity of reflection.

Henri Poincaré

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia blot Yang-Mills Heavy Quarks

$\ell_{q,\bar{q}}(\hat{\mu})$ and $F_{q,\bar{q}}(\hat{\mu})$

• Trace $\ell_{q,\bar{q}}$ and $F_{q,\bar{q}}$ as functions of $\hat{\mu} = -\mu$

 $\rightarrow \ell$ and F_q change monotony, but $\bar{\ell}$ and $F_{\bar{q}}$ don't! Then $\ell, \bar{\ell}$ increase together towards 1 [Dumitru, Hatta, Lenaghan, Orginos, Pisarski (2004)]

- ▶ "Free energy must be strictly monotonically decreasing as a function of chemical potential" \longrightarrow contradicts $\ell = e^{-\beta F_q}$?
- Interpretation $\ell \sim e^{-\beta F_q}$ is saved by a simple thermodynamic argument if the charge of the bath at $\hat{\mu} = 0$ is not zero

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks

Pure Thermal bath

One easily obtains that

$$\frac{\partial F}{\partial \hat{\mu}} = -\langle Q \rangle \quad \text{and} \quad \frac{\partial \langle Q \rangle}{\partial \hat{\mu}} = \beta \left((Q - \langle Q \rangle)^2 \right) > 0 \,.$$

Q is the

and $\hat{\mu} = -\mu$

free energy of the bath: $F = -T \ln \operatorname{tr} \exp\{-\beta (H - \hat{\mu}Q)\}$

baryonic

charge

Now, in absence of any external sources, the thermal bath is charge-conjugation invariant for $\hat{\mu} = 0$:

$$\langle Q \rangle_{\hat{\mu}=0} = 0$$

 \rightarrow for any $\hat{\mu} > 0$: $\langle Q \rangle > 0$ and thus $\frac{\partial F}{\partial \hat{\mu}} < 0$, i.e. the free energy of the bath is a decreasing function of $\hat{\mu}$

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

Conclusion & Outlook

32/34

Thermal bath with charged test source

from before:

$$\frac{\partial F}{\partial \hat{\mu}} = -\langle Q \rangle \quad \frac{\partial \langle Q \rangle}{\partial \hat{\mu}} = \beta \left\langle (Q - \langle Q \rangle)^2 \right\rangle > 0$$

In the presence of a static quark (q) or antiquark (\bar{q}) , charge-conjugation invariance is broken s.t.:

$$\langle Q \rangle_{q,\hat{\mu}=0} < 0 \qquad \langle Q \rangle_{\bar{q},\hat{\mu}=0} > 0$$

The equations above then imply that

$$\forall \, \hat{\mu} > 0 \,, \quad \langle Q \rangle_{\bar{q}} > 0 \,,$$

while there exists a certain $\hat{\mu}_0 > 0$ such that,

$$\forall \hat{\mu} \in \left[0, \hat{\mu}_0\right], \ \langle Q \rangle_q < 0 \quad \text{and} \quad \forall \hat{\mu} > \hat{\mu}_0 \,, \ \langle Q \rangle_q > 0 \,.$$

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks Light Quarks

Thermal bath with charged test source

Then

 $\ell \sim e^{-\beta(F_q - F)}$ $\bar{\ell} \sim e^{-\beta(F_{\bar{q}} - F)}$

are found by the free energy differences wrt to the bath without any external source.

Since $\frac{\partial F}{\partial \hat{\mu}} = 0|_{\hat{\mu}=0}$, both are dominated for small $\hat{\mu}$ by either F_q or $F_{\bar{q}}$, which explains the different monotony.

 $\Delta\langle Q_q \rangle$ and $\Delta\langle Q_{\bar{q}} \rangle$ should approach 0 at large $\hat{\mu}$, which we also observe.

IR QCD from Curci-Ferrari

Jan Maelger

Curci-Ferrari Model Motivation Perturbation theory in CF Correlation functions

Phase diagram & Columbia plot Yang-Mills Heavy Quarks