DFH-DFM meetings

- 7 Nov. #1: Conceptual Specifications14 Nov. #2: DFHx : Layout & Splices
- 21 Nov.
- #2: DFHx : Layout & Splices#3: Thermo-mechanical engineering
- Thermal Contraction Strategy
- Convective Heat Transfer : Fluid↔Splice

- Topics:
 - DFM: specifications & status

Overview

Each IP1 and IP5 sides equipped with 2 cold powering chains of cryostats

- Triplet insertion : DFHx SC Link (DSH) DFX
- Matching sections : DFHm SC Link DFM

DFX/DFM basic functions:

- Electrical interface between SC Link and superconducting magnets
- Supply cryogenics to the SCLink

Heat transfer from source to fluid

Objective:

- $T_{MgB2\ cable}$ & $T_{MgB2\ splice}$ < 20 K
- Heat sources:
 - Static:
 - Heat loads to He vessel (conduction/radiation)
 - Ghe flow + MLI $\rightarrow T_{fluid} \approx T_{vessel walls}$
 - Dynamic:
 - Transverse current through resistive material (Monel, REBCO tape) within splice (see meeting#2)
 - Values from Jerome F meeting #2
- Heat extraction:
 - Convective heat transfer between splice surfaces and fluid
 - design to improve heat transfer

							Dissipated power						
	R design factor	1.5		Resistance	5	Per s	olice	Per D					
Dissipated power in DFH splices		Quantity	Current	Nominal	Design	Nominal	Design	Nominal	Design				
	DFHx	[-]	[kA]	[nΩ]	[nΩ]	[W]	[W]	[W]	[W]	No			
		2	6x3	10	15	0.54	0.8	1.08	1.6				
		2	6x2.2	10	15	0.28	0.4	0.56	0.8	in t			
		3	7	6	9	0.29	0.4	0.88	1.3				
		12	2	12	18	0.05	0.1	0.58	0.9				
							Total	3.10	4.65				
UMI	DFHm	[-]	[kA]	[nΩ]	[nΩ]	[W]	[W]	[W]	[W]				
		2	13	2	3	0.34	0.51	0.68	1.01				
		8	0.6	12	18	0.00	0.01	0.03	0.05				
							Total	0.71	1.07				

Convective heat transfer: first approach

- Equilibrium $Q = hA_{tr}\Delta T$:
 - Q: transferred heat = dissipated heat in the splice
 - Atr: exposed area to flowing fluid
 - $\Delta T = T_{fluid} T_{surface}$
 - h: convective heat transfer coefficient, depends on:
 - Fluid properties (P, T, Cp, u) ≈ constant
 - Mass flow Qm
 - Geometry (flow area, ε) \rightarrow flow properties (Re, Pr, Nu)
- Order of magnitudes
 - Literature
 - Analytical calculations:
 - Between 0.1 and 5 g/s of He @ 1.3 bara & 17K, "efficient" heat exchanges require "small" flowing area
 - >Ø200 diameter, turbulent flow requires high mass flows
- → Flowing area must be reduced around splices to offer the proper turbulent flow leading to efficient convective heat transfer
 - → Design A_{flow} to $\uparrow Re \rightarrow \uparrow h \rightarrow \uparrow Q$

Inputs for design

- Design approach proposal: Maintain splices in electrical insulating supports
 - Source of the second sec
 - 1 or several splices per flowing tube
- Is the current leads mass flow sufficient to cool splices ? (first approach: individual tube / splice(s))
 - Current leads 0.05g/s/kA → 5 g/s
 - Heat loads SCLink 1.5W/m \rightarrow $T_{DFHx1} = 10.1 K$
 - 18 kA splices: 0.9 g/s @ 10.1K → T_{18kA splice} < 12 K
 - Heat loads interlink 1.5 W/m \rightarrow $T_{DFHx2} = 11.5 K$
 - 2 kA splices: 0.2 g/s @ 11.5K \rightarrow $T_{2kA splice} < 12$ K
 - 7 kA splices: 0.35 g/s @ 11.5K \rightarrow $T_{18kA splice} < 13$ K
- What if :
 - R_{Splice} **7** to 20n Ω , T_{splice} =17K
 - \dot{m}_{CL} > due to lower T_{CL} ; for half mass flow, $\Delta T_{splice} + 1K$

Assumptions:

Non insulation between splice & flow

Homogeneous temperature in the splice

CL: Independent cryostat for 18kA & 13 kA / Common 4-in-1 cryostat for 2kA (3-in-1 for 7kA)

Temperature of splices for CL nominal flow and 5mm gap around splices for flow area

			G	ieometr	'y		Calcs.	. Parame	ters	Ma	ss flow	Coef.	Heat load			Mass flow	Heat Load	Temp.	Mass flow	Heat Load	Temp.		Mass flow	Heat Load	Temp.		Temp.
	Qty	а	b	L	af	bf	Atr	Aflow	Deq	per CL	per splice	h	Q design	DT		DFX	SCLink	T-DFHx1	DFHx2	Interlink	T-DFHx2	Tsplice	HTS	Flex HTS	T-HTS	T-CL	T-return
	[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm2]	[mm2]	[mm]	[g/s]	[g/s]	[W/m2.K]	[W]	[K]		[g/s]	[W]	[K]	[g/s]	[W]	[K]	[K]	[g/s]	[W]	[K]	[K]	[K]
18 kA splice	2	70	60	300	50	5	33000	1000	35.7	0.9	0.9	25	0.8	1.0								11.1	0.9		10.3	12.0	
13 kA splice	2	70	60	300	50	5	33000	1000	35.7	0.65	0.65	17	0.4	0.7	→	F 2F	150	10.1	2.2	15.0	11.4	10.8	0.65	7 5	10.2	12.5	11.0
2 kA splice	12	30	20	300	20	5	15000	400	22.6	0.1	0.2	15	0.1	0.4		5.35	150	10.1	2.3	15.0	11.4	11.9	0.4	7.5	11.5	15.3	11.9
7 kA splice	7	45	20	300	35	5	24000	700	29.9	0.35	0.35	14	0.4	1.2								12.6	1.05		11.7	13.1	

$Q = \dot{m} C p \Delta T \qquad Q = h A_{tr} \Delta T$

Inputs for design

- 1st conceptual design proposal:
 - 18 kA splices:
 - In series with Current leads
 - Individual flowing tube
 - → standard sleeve system
 - → local flow increase in case
 - → individual protection of splices
 - 2 kA / 7 kA splices:
 - 2 options

	DFHx2 Option #1	DFHx2 Option #2
Increase of mass flow if required	Through Current leads	Through return line
Mass flow control	Control flow through parallel lines at current leads outlet	CL mass flow independent from splice cooling
Flow control at splice level	Divide 1 mass flow into 4 splices	 Divide 1 mass flow into 15 splices → How to ensure by geometry parallel flows around splices ?

- Check mechanical feasibility
- Validate physical accesses to cables/splices
- DFHx2 : parallel flow control ?
- Validate design approach with DEMO1

Convective heat transfer at DDFH splice Demo1

- 6 sub-splices 20x30x200mm
- Flowing section: 720 mm², Deg = 30 mm
- Area in contact with fluid: 12 x 20 x 200 =48 000 mm²
- Dissipated heat:

DFHx1

 T_{DFHx1}

 $\rightarrow \dot{m} = 5 g/s$

 T_{DFX}

- R=10nΩ, 6 x I=3kA
- Each sub-splice: P=0.9 W / Total=5.4W
- Convective heat transfer:
 - Assumption: homogeneous T in splices bulk parts.

Mass flow	TGHE	Р	h	ΔΡ	ΔΤ	T _{splice}
[g/s]	[K]	[bara]	[W/m ² .K]	[mbar]	[K]	[K]
1	17	1.3	32.5	< 1 mbar	3.5	20.5
5	17	1.3	118	< 1 mbar	0.95	18.0
5	300	1.3	NA	< 1 mbar	NA	NA

Thermal Convection

 $O = hA_{trr}\Delta T$

Re	6.6E+04	[-]	0	9.43E-01	[W]
Flow:	Turbulent		Tincrease	3.56E-02	[K]
Pr	7.22E-01	[-]	ΔΤ	1	[K]
ρ	3.70E+00	[kg/m3]	Atr	8.00E-03	[m2]
k	2.38E-02	[W/m/K]	u		
μ	3.24E-06	[Pa.s]	h = Nu	1.18E+02	[W/m 2/
Ср	5.30E+03	[J/kg/K]	k		
Phe	1.3	[bara]	Nu	1.49E+02	[-]
The	17	[K]	α/n	0.023	0.3
d	0.03	[m]	Liq (a=0.027,	n=0.33)	
Qm	5.00E-03	[kg/s]	5 Gas {α=0.023	, n(cool;heat)=	(0.3,0.4)}
Inputs		Unit	Input	1	Unit
Re-	πdμ	r =k	Valio	l for turbuler	nt flow on
	4Qm	Cp. µ		Nu = c	ike pr