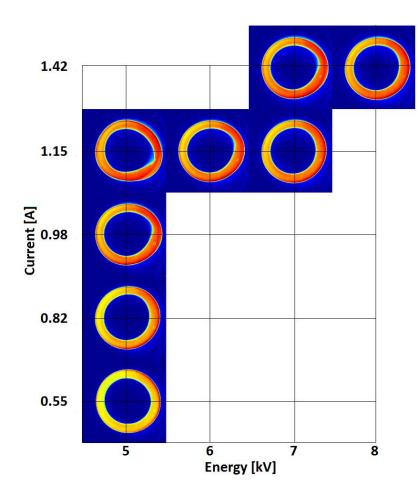
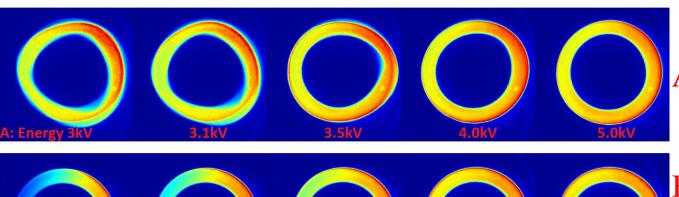
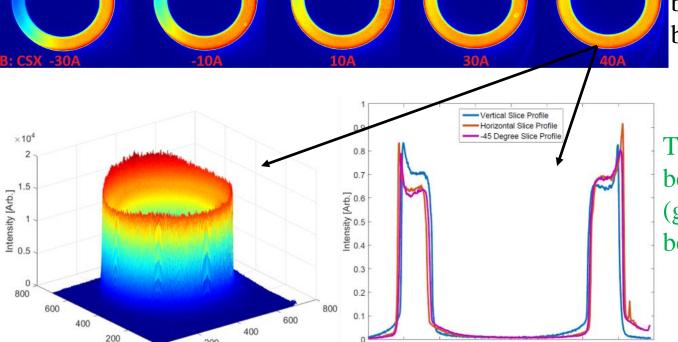
Hollow Electron Beam Profile in RHIC


Xiaofeng Gu, Wolfram Fischer

a passion for discovery


Beam Energy and Diocotron Instability


A The hollow e-bema diocotron instability can be reduced by increasing beam energy.

Asymmetry of Hollow Beam

R [mm]

A same as previous slide

200

X [Pixel]

0 0

Y [Pixel]

B Asymmetry becomes better after moving beam Horizontally.

To find better symmetry beam, will move GSX (gun side) when have ebeam again.

Magnetic Field and Diocotron Instability

For the magnetic field effect, after conbine Eq. 1 and Eq. 8, one can find that the temporal evolution frequency and instability growth rate can be rewritten as:

$$\omega \propto n_{cathode}(r)/B_{cathode}$$
 (8)
 $\gamma \propto n_{cathode}(r)/B_{cathode}$ (9)

C-1 e-beam current and cathode field are two factors for diocotron instability development, besides beam inner-out radius and vacuum pipe radius.

Seems the superconducting field doesn't affect instability: demonstrates C-1 indirectly?

Cathode field is too higher to demonstrate C-1. Will repeat is again.

No instability to repeat the demonstration.

Hollow Beam Simulation Plan

It is planned to do some simulation with CST for the peer-view paper about hollow e-lens in RHIC.

It is good to collaborate with CERN for the simulation: we can provide magnet geometry and beam geometry.

A Simulation hollow beam with bend region.

B Simulation hollow beam with bend region and with off-set to beam pipe

C Simulation diocotron instability with different current, energy, cathode field and other field.