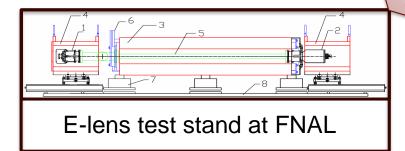


Beam dynamics simulations in electron lens test stand

S. Sadovich, A. Rossi in collaboration with G. Stancari, FNAL


8th HL-LHC Collaboration Meeting CERN, October 17, 2018

Outline

Simulations:

- Benchmarking
- Image analysis

Existing electron lenses and HEL@HL-LHC

Tevatron, FERMILAB

Table 1: Electron Lens and Tevatron collider parameters.

Parameter	Symbol	Value	Unit	
Tevati	on Electron	Lens	X-000000	
Electron energy	U_{e_i}	5/10	kV	
(oper/max)	Ue,	3/10		
Peak electron current	J_{o}	0.6/3	A	
(oper/max)			А	
Magnetic field in	B_{main}	30	kG	
main/gun solenoid	B_{gun}	3		
Radii: cathode/e-beam	a_c	7.5	mm	
in main solenoid	a_e	2.3		
e-pulse period/width,	T_{o}	21	μs	
"0-to-0"	T	≈0.6	μs	
Interaction length	L_{e}	2.0	m	
	Collider Pa		11476-2001	
Circumference	C	6.28	km	
Proton/antiproton	E	980	GeV	
beam energy	_		11-1-1-1	
Proton bunch intensity	N_p	250	10°	
Antiproton bunch intensity	N_a	50-100	10 ⁹	
Emittance proton,	Ep	≈2.8	μm	
antiprot. (norm., rms)	ε_a	≈1.4		
Number of bunches,	N_B	36	ns	
bunch spacing	T_h	396		
Initial luminosity	L_0	1.5-2.9	1032 cm-2s-1	
Beta functions, TEL2	β_y/β_x	150/68	m	
Beta functions, TEL1	β_y/β_x	29/104	m	
Proton/antiproton	ξP	≈0.008	max., per	
head-on tuneshift	ža	≈0.011	IP	
Proton/antiproton	10°	≈0.003	max.	
long-range tuneshift	ΔQ^{α}	≈0.006		

V. Kamerdzhiev, Progress with Tevatron electron lenses, Proceedings of COOL 2007, Bad Kreuznach, Germany

RHIC, BNL

Parameter	Unit	Value	Value
Proton beam parameters		Design	2015
-		_	operated
Total proton energy E_p	GeV	250	100
Relativistic factor γ _p		266.4	106.8
Bunch intensity N_p	10^{11}	3.0	2.25
$\beta^*_{x,y}$ at IP6, IP8 (p-p)	m	0.5	0.85
$\beta^*_{x,y}$ at IP10 (p-e)	m	10.0	15.0
Lattice tunes (Q_x, Q_y)		(0.695,	(0.695,
		0.685)	0.685)
Phase advance (IP8-IP10)	Degree	180	180
rms emittance ε_n , initial	mm mrad	2.5	2.8
rms beam size at IP6, IP8, σ^*_{p}	$\mu \mathrm{m}$	70	150
rms beam size at IP10, σ_p^*	μ m	310	630
rms bunch length σ_s	m	0.50	0.70
Beam-beam parameter ξ/IP		0.0147	0.0097
Number of beam-beam IPs		2 + 1	2 + 1
Electron lens parameters			
Distance of center from IP	m	1.5	1.5
Effective length L_e	m	2.1	2.1
Kinetic energy $E_{\rm e}$	kV	5	5
Relativistic factor β_e		0.14	0.14
Relativistic factor y _e		1.0002	1.0002
Current I.	Α	1.0	0.43/0.60
Electron beam size at	μ m	350	650
interaction			
Linear tune shift		0.0147	0.01

X. Gu, Electron lenses for head-on beam-beam compensation in RHIC, Physical review accelerators and beams 20, 023501 (2017)

HL-LHC, CERN

Current 5A at 15kV
Beam shape Hollow beam

Effective length 2.9 m

HEL@HL-LHC has
higher current,
higher current density
longer effective length
comparing to implemented electron lenses

HEL components (gun, diagnostics, modulator, etc.) are unique.

Beam dynamics in electron lens (short overview)

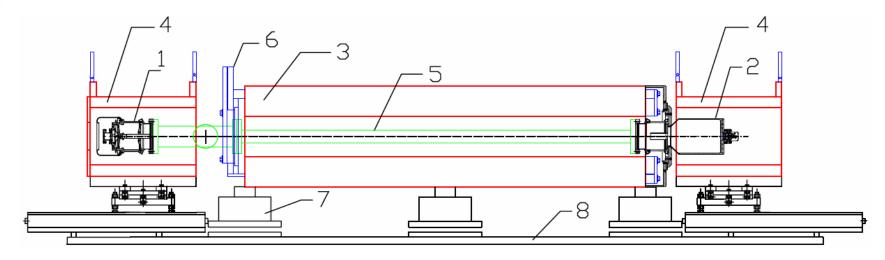
Main solenoid – interaction of electron and proton/ion beam

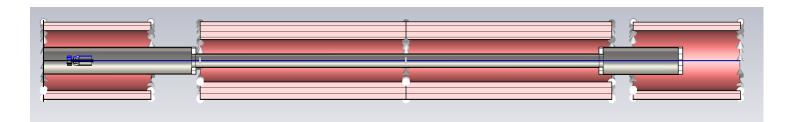
Proton/ion beam

Electron beam

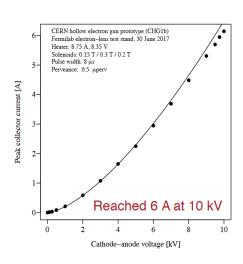
Bending solenoid – electron beam injection

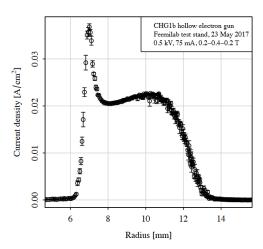
Bending solenoid – electron beam extraction

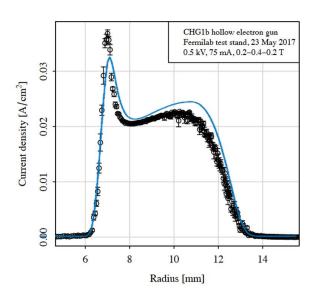

$$\frac{d\mathbf{r}_{\text{guiding centre}}}{dt} = v_{\parallel} \frac{\mathbf{B}}{|B|} + \frac{\mathbf{E}_{\perp} \times \mathbf{B}}{B^{2}} + v_{\perp} \frac{\mathbf{B} \times \nabla \mathbf{B}}{B^{2}} - \frac{v_{\parallel}^{2}}{\omega_{c}} \frac{\mathbf{R}_{c} \times \mathbf{B}}{R^{2}|B|}$$


- In the presence of drift tube possible formation of virtual cathode
- Intensity modulation possible change of longitudinal profile
- Reliable simulation tool and test stand is required for development/ studying and optimization of the hollow electron lenses for HL-LHC.

FNAL test stand - model in CST® Particle Studio



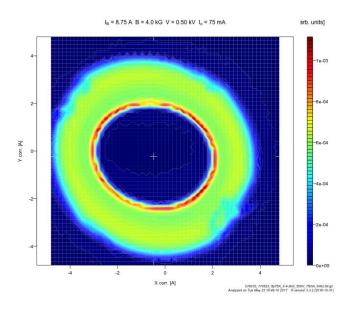

FNAL test stand – electron gun



Measured performance of CHG1b 25-mm e-gun

Data file: CHG1b_170523_8p75A_2-4-2kG_500V_75mA_hires.txt.gz

Courtesy of Giulio Stancari, FNAL


Giulio Stancari I Electron-gun emission and calculation of residual fields

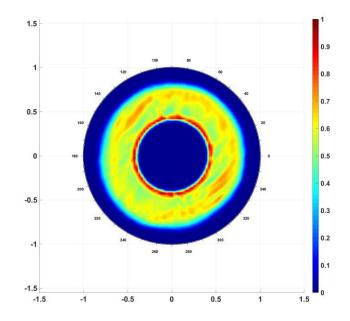

LHC COIUSM I 9 Mar 2018

Image comparison

Comparison pixel by pixel can not be used

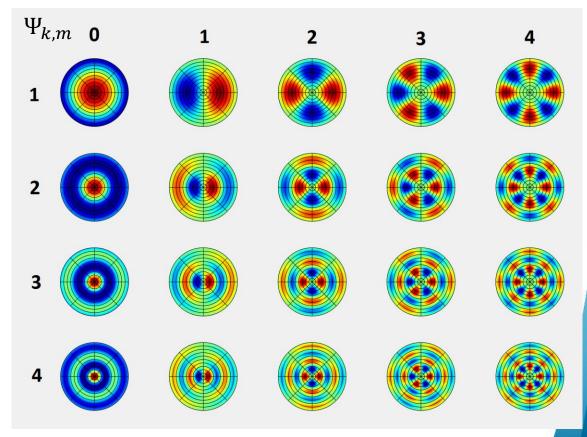
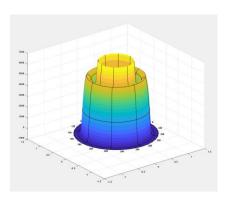


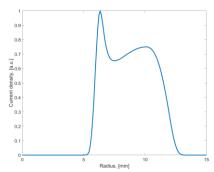
Image comparison – Polar Fourier Transform

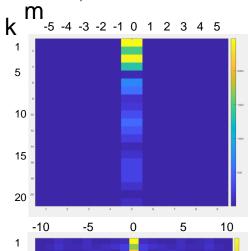
$$f(r,\varphi) = \int_0^\infty \sum_{m=-\infty}^\infty P_{k,m} \Psi_{k,m}(r,\varphi) k \, dk$$

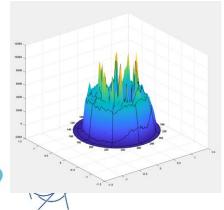
 $\Psi_{k,m}$ - basis function

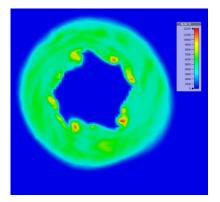
 $P_{k,m}$ - polar Fourier coefficients

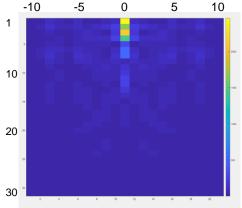



Image comparison – test pulse

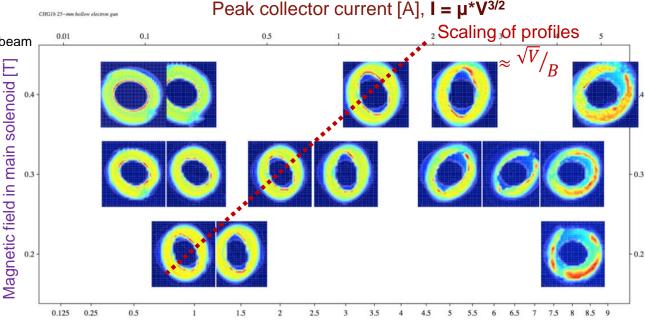

Beam profile in 3D


Beam profile in 2D





Profile evolution (results from FNAL test stand)

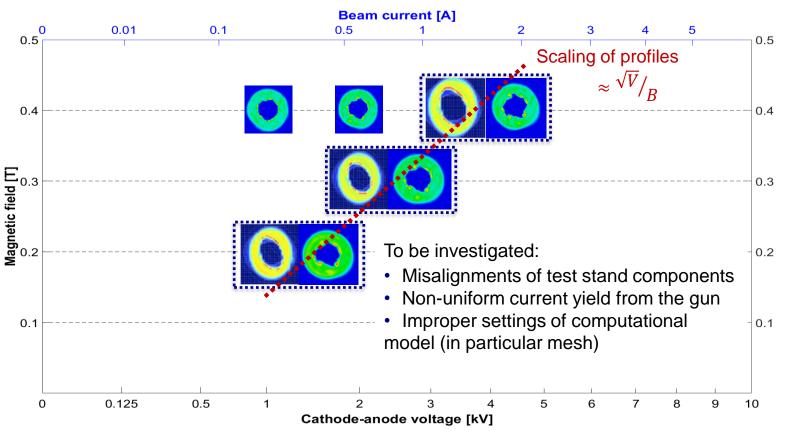

Total rotation phase φ of the hollow electron beam

$$arphipprox\Omega_D\Delta T\proptorac{n_{e0}}{B}rac{L}{v_z}$$

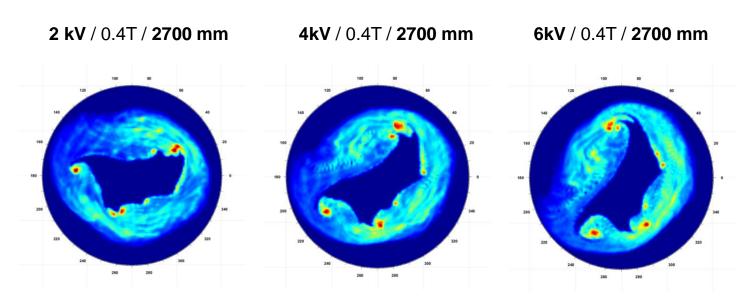
$$\Omega_{\rm D}$$
 – diocotron frequency = $\frac{\omega_{pe}^2}{2\omega_{ce}} \propto \frac{n_{e0}}{B}$
 ΔT – transient time $\approx \frac{L}{\vartheta_{ce}}$

$$\vartheta_z \approx \frac{2eV}{m_z} \propto \sqrt{V}$$
 $J = n_{e0}e\vartheta_z \propto V^{3/2}$

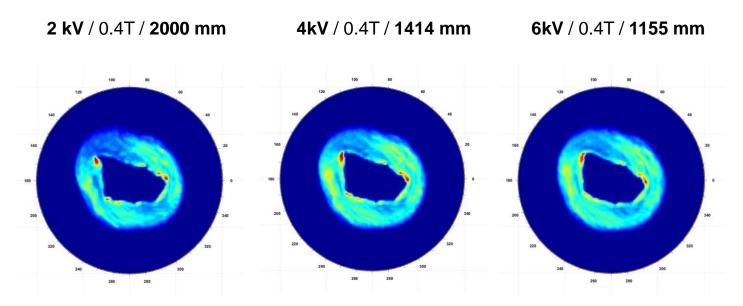
$$\varphi \approx const \times \frac{\sqrt{V}}{B}L$$



Cathode-anode voltage [kV]


Profile evolution - simulation

Profiles of the beam with tilted gun


*In simulations gun is tilted by 2° and then aligned by steerers.

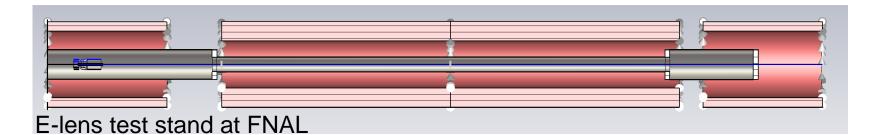
$$\varphi \approx const \times \frac{\sqrt{V}}{B}L$$

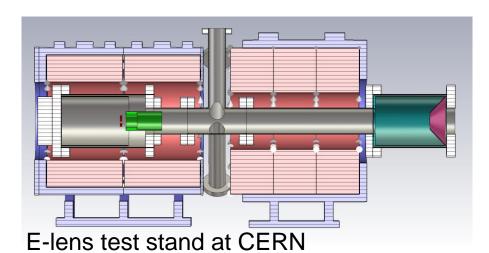
Scaling of profiles vs Length (simulation)

*In simulations gun is tilted by 2° and then aligned by steerers.

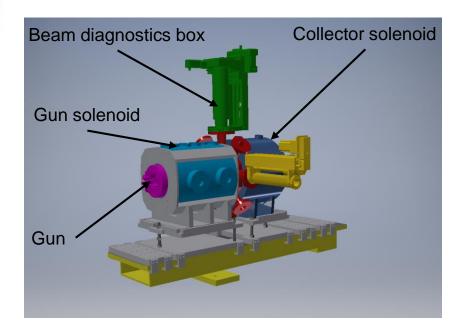
$$\varphi \approx \frac{\sqrt{V}}{R}L$$

$$\varphi \approx \frac{\sqrt{V}}{R}L$$
 $\frac{\sqrt{2}[kV]}{0.4[T]}2000[mm]$ \approx $\frac{\sqrt{4}[kV]}{0.4[T]}1414[mm]$ \approx $\frac{\sqrt{6}[kV]}{0.4[T]}1155[mm]$


$$\frac{\sqrt{4} [kV]}{0.4 [T]} 1414 [mm]$$


$$\frac{\sqrt{6} [kV]}{0.4 [T]} 1155 [mm]$$

E-lens test stand at CERN

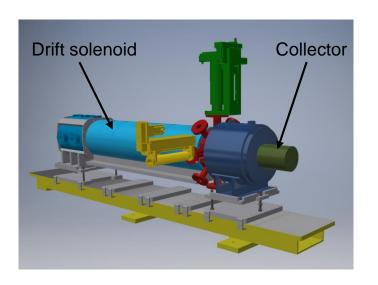


Electron lens test stand at CERN: stage 1

Purpose of first stage:

- Preparation:
 - Commissioning hardware (magnets, vacuum, HV system, control, etc.)
 - Safety and technical aspects of operation
 - Commissioning diagnostic procedures (current, profile, position)
- Measurements:
 - Electron gun tests: characterization (profile measurements)
 - Electron gun: anode modular

Covered by HL-LHC

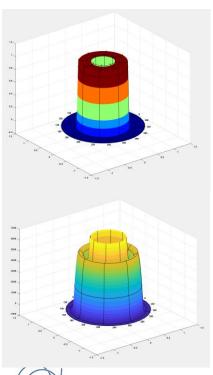

Conclusions

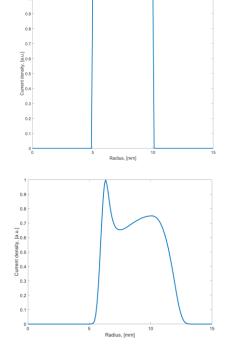
- Measurements at FNAL electron lens test stand were simulated using CST® Particle Studio:
 - Perveance of the gun and initial beam profile are in good agreement
 - Beam profiles from experimental measurements are more distorted comparing to results from simulation
 - Possible reasons of such discrepancies should be investigated:
 - Misalignments of test stand components
 - Non-uniform current yield from the gun
 - Improper settings of computational model (in particular mesh)
- E-lens test bench at CERN will give additional capabilities for gun characterization.
- Comparison of profiles based on Fourier decomposition in polar coordinates was introduced for data analysis.

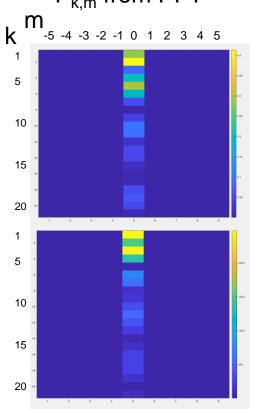
Test stand: stage 2.

Purpose and measurements of stage 2:

- Allow drift and see beam deformations/rotations/... computer model validation
- Study electron beam dynamics in regime close to virtual cathode
- Study electron beam dynamics with compression
- Test Beam Position Monitor 'shoe-box' or 'strip-line' with very HF modulation
- Test effect of very HF modulation (<10% current) on beam dynamics (microbunching?) for HEL




Image comparison – test pulse


Beam profile in 3D

Beam profile in 2D

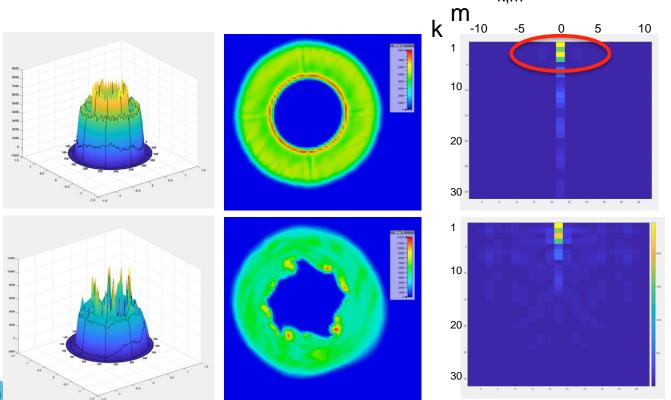


Image comparison – distorted beam

 $P_{k,m}$ from PFT

