Experimental results in 2018 from Cockcroft

H. Zhang, A. Salehilashkajani, C. Welsch

Outline

- Gas jet in fluorescent mode v2
 - System highlights
 - Vacuum condition test
 - Beam imaging using N₂ gas jet and Characterization of N₂ jet.
 - Beam imaging using Neon gas and comparison to Nitrogen
 - Vacuum condition test aiming for LHC installation
- Future plan

Building a prototype in Cl

Nozzle and skimmers

Hao Zhang BGC Collaboration Meeting 27/11/18 haozhang@cockcroft.ac.uk

~45 degree tilted

Blackening of the interaction chamber

Electron gun

- Energy: 100 eV to 10 keV
- Current: 200uA to 10mA
- Spot size: 1.5mm to 20 mm

Electron beam diagnostics

Phosphor screen

Faraday Cup

Hao Zhang BGC Collaboration Meeting 27/11/18 haozhang@cockcroft.ac.uk

7

Vacuum test of current system

E-gun on

Hao Zhang BGC Collaboration Meeting 27/11/18 haozhang@cockcroft.ac.uk

E-gun off

Nitrogen gas jet test

2s integration time to give a profile

More time to give a 2D detailed image

τιο

Background pressure: 1.56E-08mbar

Hao Zhang BGC Collaboration Meeting 27/11/18 haozhang@cockcroft.ac.uk

9

Moveable gauge chamber

Interaction chamber

- Assume linear expansion from the 3rd skimmer
- The expansion is decoupled in both transverse direction

Average density = 9.0 e14 m⁻³

265 mm

haozhang@cockcroft.ac.^luk

4

224 mm

0.4 mm

x 10¹⁴

Hao Zhang bgc Collaboration Meeting 27/11/18

Residual gas calibration

Gas jet image of a vertical 3rd skimmer

Photon Gauge test

For gas jet image: The photon

Gas jet average number density = 1.12e15 m⁻³or 4.62e-8 mbar

Cross section measurement

N,

σ

Ι

n

d

Ω T

T,

 η_{pc}

$$\begin{split} \mathsf{N}_{\gamma} &= \sigma \cdot \frac{\mathbf{I} \cdot \Delta t}{\mathbf{e}} \cdot \mathbf{n} \cdot \mathbf{d} \cdot \frac{\Omega}{4 \pi} \cdot \mathbf{T} \cdot \mathbf{T}_{\mathsf{f}} \cdot \eta_{\mathsf{pc}} \cdot \eta_{\mathsf{MCP}} \\ \mathbf{n} &= 0.96 \text{e} 15 \pm 0.2 \text{e} 15 \text{ m}^{-3} \\ \mathbf{d} &= 0.98 \text{e} \cdot 3 \pm 0.2 \text{e} \cdot 3 \text{ m} \\ \Omega &= 0.0059 \\ \mathbf{T} &= 0.75 \pm 0.05 \\ \mathbf{T}_{\mathsf{f}} &= 0.45 \pm 0.05 \\ \mathbf{\eta}_{\mathsf{MCP}} &= 0.75 \pm 0.15 \\ \eta_{\mathsf{PC}} &= 0.19 \pm 0.02 \\ \mathsf{N} &= 15700 \pm 100 \\ \Delta t &= 1600 \text{ s} \end{split}$$

- = average number of photons detected during time Δt
- = cross section of the photon generation process
- = electron or proton current (electrical)
- = elementary charge
- = gas density
- distance traveled through gas (curtain thickness)
- = solid angle of the optics
- transmittance of the optical system
- = transmittance of the optical filter
- = quatum efficiency of the photocathode
- η_{MCP} = detection efficiency of the MCP

Cross section: $1.07 \pm 0.55 \text{ e}$ -18 cm⁻²

Comparison to the theory

1.59e-18 cm⁻² for 5keV electron beam

Preliminary results of Neon gas jet

Electron energy: 3 keV Beam current: 0.50mA Integration time: 200 s for N_2 , 4000 s for Neon Inlet pressure: 5bar

Image from the phosphor screen

Hao Zhang BGC Collaboration Meeting 27/11/18 haozhang@cockcroft.ac.uk

The Cockcroft Institute

Comparison between N₂ and Neon

- Gas jet condition: inlet 5 bar
- Photon number per second
 - Nitrogen: 5.63
 - Neon: 0.77
- Ratio of Nitrogen/Neon: 7.32

Possible reason

$N_{\gamma} = \sigma \cdot \frac{\mathbf{I} \cdot \Delta t}{\mathbf{e}} \cdot \mathbf{n} \cdot \mathbf{d} \cdot \frac{\Omega}{4 \pi} \cdot \mathbf{T} \cdot \mathbf{T}_{\mathbf{f}} \cdot \eta_{\mathbf{pc}} \cdot \eta_{\mathbf{MCP}}$	Neon	Nitrogen	Ratio of Nitro	Ratio of Nitrogen and Neon	
	3keV	3keV	3keV		
Degree of freedom	3	5			
Heat capacity ratio	1.4	1.67			
Atomic mass	20	28			
Pressure in the interaction from theory	3.29E+17	2.62E+16	7.96E-02		
(inlet 5 bar)					
Cross section	4.60E-20	2.37E-18	5.15E+01		
Eff_PC	0.09	0.19	2.111111		
T_filter	9.00E-01	4.50E-01	5.00E-01		
Equal density			5.43E+01		
Take density into consideration			4.32E+00		

Hao Zhang BGC Collaboration Meeting 27/11/18 haozhang@cockcroft.ac.uk

The Cockcroft Institute

Vacuum test of modified system (lower pumping speed)

DN100 gasket with 63 hole

Pressure data when e-gun is off

Detailed data for each chamber will be loaded to indico

Hao Zhang BGC Collaboration Meeting 27/11/18 haozhang@cockcroft.ac.uk

PRESSURE IN THE DUMP CHAMBER VS **INLET PRESSURE** 4.20E-10 4.00E-10 y = 7.89E-12x + 3.19E-10 0 0 0 0 3.80E-10 **2** 3.60E-10 **%** 3.40E-10 **a** 3.20E-10 3.00E-10 10 $\left(\right)$ 5 **Inlet pressure**

Pressure data when e-gun is on

Detailed data for each chamber will be loaded to indico

Vacuum test of modified system (lower pumping speed and back flow blocker)

DN100 gasket with 63 hole

The Cockcroft Institute

haozhang@cockcroft.ac.uk

Pressure data when e-gun is off

Detailed data for each chamber will be loaded to indico

Pressure data when e-gun is on

0

Pressu

CHAMBER VS INLET PRESSURE 3.60E-09 3.50E-09 מ y = 4.73E - 12x + 3.23E - 093.40E-09 **2** 3.30E-09 0 0 0 0 0 0 3.20E-09 3.10E-09 3.00E-09

PRESSURE IN THE INTERACTION

Detailed data for each chamber will be loaded to indico

Hao Zhang BGC Collaboration Meeting 27/11/18 haozhang@cockcroft.ac.uk

0

5

Inlet pressure

10

Summary of highlight

- A prototype supersonic gas jet monitor based on BIF mode was designed, built and successfully commissioned;
- N₂ gas jet was carefully measured and has been successfully tested as a working gas using laboratory electron beam source;
- Neon gas jet has been proven as working gas.
- Vacuum test of a modified System in order to design a LHC compatible gas jet system.

Future work

- Continue to optimize the design and geometry
 - Check again the alignment
 - E.g. new De Laval nozzle
 - Change geometry of skimmers.
- Characterize Neon gas jet
- Argon used as a working gas
- Design and building of v3 gas jet system (LHC compatible)
 - Final deliverable for the HL-LHC-UK

Thank you

