

Latest Developments at GSI Experiment at TU Munich's Tandem

S. Udrea, P. Forck

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

Experiment at TU Munich's Tandem performed in collaboration with:

Raphael Hampf¹, Andreas Himpsl¹, Andreas Ulrich¹, Jochen Wieser² ¹TU Munich, ²Excitech

➤Working gases

- >Update on Argon cross sections and integration times
- Experimental setup at the TU Munich's Tandem
- > Data processing for signal to noise ratio improvement
- Comparison between N_2 and Ne

Fluorescence of different gases

p @ 4,757 MeV/u

Strongest emission from Ar⁺ blue/ green lines mainly corresponding to different $[3s^23p^4(^{3}P)]4p \rightarrow 4s$ transitions with life times of 10-20 ns.

Several Ne⁺ UV lines mainly corresponding to different $[2s^22p^4(^{3}P)]3p \rightarrow 3s$ transitions with life times below 10 ns.

Several Ne yellow/red lines mainly corresponding to different $[2s^22p^5(^2P)]3p \rightarrow 3s$ transitions with life times of about 20 ns.

The strong UV/blue lines _correspond to the $B^2\Sigma_u^{+} \rightarrow X^2\Sigma_g^{+}$ electronic transition band of N_2^{+} , life times are of about 60 ns.

F. Becker, Ph.D. thesis, T.U. Darmstadt, Germany, 2009

Ar + p/e⁻ \rightarrow (Ar⁺)^{*} + e⁻ + p/e⁻ \rightarrow Ar⁺ + γ + e⁻ + p/e⁻

Leads to several $[3s^23p^4(^{3}P)]4p \rightarrow 4s$ transitions of the Ar⁺ ion with wavelengths between 400 and 500 nm. The transitions in the table below have lifetimes of 10-20 ns. **Remark: presently cross section data available just up to 1keV for e**⁻ **impact! Upper levels are also populated by cascades but their contribution is small, approx. 5%.**

	λ [nm]	[2s ² 2p ⁴ (³ P)]4s	[3s ² 3p ⁴ (³ P)]4p
significant branch	454.5	² P _{3/2}	² P° _{3/2}
strongest line	476.5	² P _{1/2}	² P° _{3/2}

Ar + p/e⁻ \rightarrow (Ar)^{*} + p/e⁻ \rightarrow Ar + γ +p/e⁻

Drives several $[3s^23p^5(^2P)]4p \rightarrow 4s$ transitions of Ar with the strongest at wavelengths above 700 nm. The upper levels from the table have lifetimes of 20-40 ns. **Remark: presently cross** section data available just up to 1keV for e⁻ impact! No significant branching, cascades are not expected to lead to relevant distorsions.

[3s ² 3p ⁵ (² P)]4p	[3s ² 3p ⁵ (² P)]4s	λ [nm]	
2p ₁	1 s ₂	750.4	strongest line
2p ₅	$1s_4$	751.5	

Cross sections for neutral Ar

Cross sections for Ar+

Photon rate estimations

$$\begin{split} \mathsf{N}_{\gamma} &= \sigma \cdot \frac{\mathbf{I} \cdot \Delta t}{e} \cdot \mathbf{n} \cdot \mathbf{d} \cdot \frac{\Omega}{4 \pi} \cdot \mathbf{T} \cdot \mathbf{T}_{\mathsf{f}} \cdot \eta_{\mathsf{pc}} \cdot \eta_{\mathsf{MCP}} \quad \overset{\mathsf{N}_{\mathsf{v}}}{\underset{\mathsf{I}}{\mathsf{\sigma}}} \\ \mathbf{n} &= \mathbf{2.5} \cdot \mathbf{10^{10} \ cm^{-3}} \text{ (Still not there!)} \quad \overset{\mathsf{e}}{\underset{\mathsf{d}}{\mathsf{n}}} \\ \mathsf{d} &= 5 \cdot \mathbf{10^{-2} \ cm} \quad \overset{\mathsf{d}}{\underset{\mathsf{d}}{\mathsf{sr}}} \text{ (Scheimpflug!?)} \quad \Omega \end{split}$$

sr (Scheimpflug!?) 22

$$\Gamma_{f} = 80\%$$

$$\eta_{MCP} = 75\%$$

- = average number of photons detected during time Δt
- = cross section of the photon generation process
- = electron or proton current (electrical)
- = elementary charge
- = gas density
- = distance traveled through gas (curtain thickness)
- = solid angle of the optics
- = transmittance of the optical system
- = transmittance of the optical filter

= quatum efficiency of the photocathode

= detection efficiency of the MCP η_{MCP}

Projectile	Emitter	λ [nm]	σ [cm²]	I [A]	η_{pc}	N _γ [s⁻¹]	1/N _y [s]
electron	Ar	750.4 & 751.5	7.4·10 ⁻²⁰	5	0.02	2.9·10 ⁴	3.4·10 ⁻⁵
proton	Ar	750.4 & 751.5	3.3·10 ⁻²¹	1	0.02	2.6·10 ²	3.8·10 ⁻³
electron	Ar+	454.5 & 476.5	9.9·10 ⁻²¹	5	0.2	4.0·10 ⁴	2.5 •10⁻⁵
proton	Ar+	454.5 & 476.5	1.7·10 ⁻²¹	1	0.2	1.4·10 ³	7.4·10 ⁻⁴

Т

 T_{f}

 η_{pc}

Remark: The Ar⁺ cross section can be significantly increased by integrating over 400 < λ < 500 nm

Experimental setup at TU Munich's Tandem

Measurements have been performed for N₂, Ne and Ar at pressures between $2 \cdot 10^{-4}$ and 0.3 mbar. Depending on gas different filters have been used. According to the principle of equal velocities 13.8 MeV p⁺ should be equivalent to 7.5 keV e⁻.

651

Raw data

G 55 1

Typical background single shot image, 10 s exposure

Typical single shot image with beam on, 10 s exposure

Note: Strongly exposed spots of several pixels due to secondary particles; stripes starting at such spots most likely due to smearing.

Improving signal to noise

Averaging over a few 100 images doesn't help Computing the median of the same images works

Note: The hot spots in the median image can be removed by a thresholded median filter applied to it (called "Remove Outliers" in ImageJ).

Profile from image

The average pixel value is computed for each row within the selected area. This is done separately for images obtained with beam on and off.

Ne profile @0.03 mbar and filter @585 nm

N₂ profile @0.03 mbar and filter @391 nm

Profile comparison

- due to additional data found in literature the knowledge of fluorescence cross sections for Ar has improved
- new estimates of integration times for Ar were possible
- several measurements have been performed with 13.8 MeV protons and N_2 , Ne and Ar as target gases at the Tandem accelerator of TU Munich
- the experimental intensity ratio for Ne and N₂ compares well with the one predicted by extrapolation from available data.