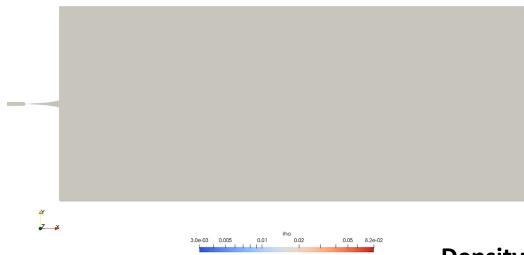
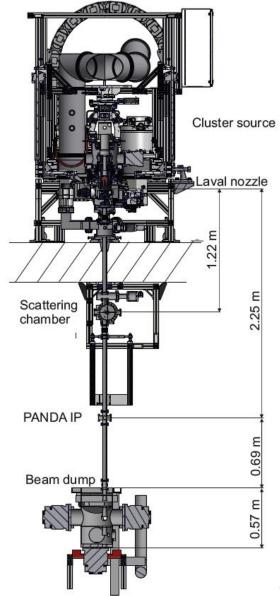
Summary of Jets

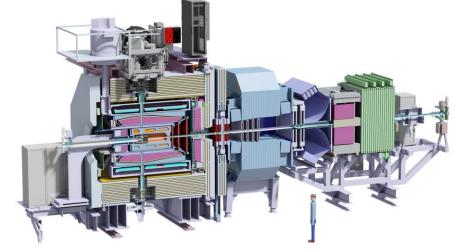
Tom Dodington, BI-ML
BGC Collaboration Meeting
27/11/2018


PANDA Cluster Target - Nozzles

- Alfons Khoukaz & co. at Munster Uni.
- Nozzle simulations done using OpenFOAM.
 This can be used to simulate both gas-jet and cluster-jet beams.
- Variable nozzle temperature. This allows clustering, and the size of cluster can be selected by varying the temperature.
- Originally using CERN MME nozzles, now produced in-house.
- Measurements performed with gaseous, supercritical and fluid hydrogen


```
28um CERN Convergent
Divergent nozzle simulation
S. Vestrick and P. Brand
(WWU)
```

```
p_nozzle = 10bar,
T_nozzle = 50K,
p_chamber = 10E-3mbar
```



PANDA Cluster Target - Nozzles

- Test of different collimator types
- Variation of orifices between pumping stages
- Minimization of beam dump back flow rates

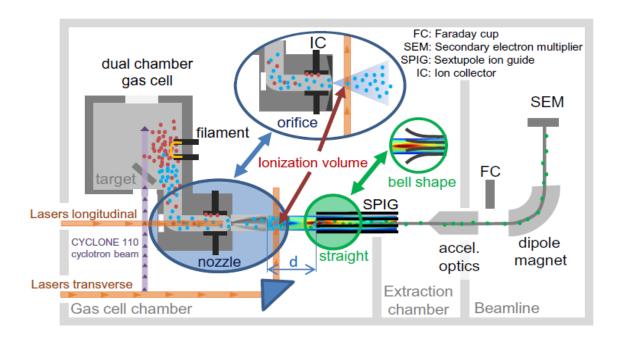
Münster cluster experiment

A. Khoukaz

Planned PANDA Setup with Cluster Target

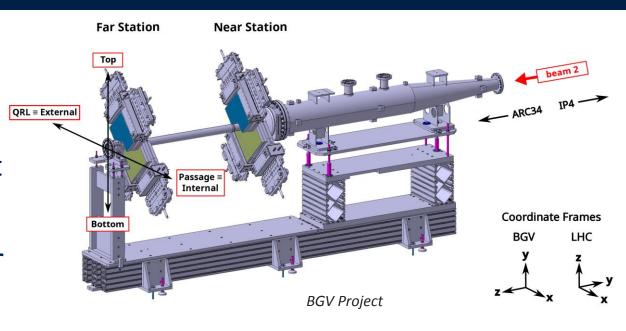
- PANDA cluster target installed on the COSY ring at Jülich laboratory.
- Beam-Time approved
- Planned beam-target interactions

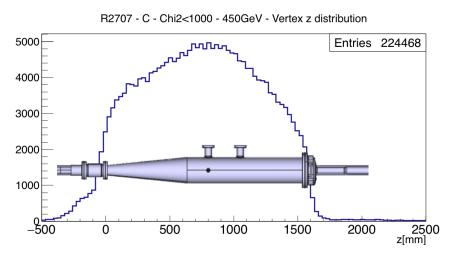
Other Cluster Experiments


- PANDA cluster jet was developed on concepts from E760 & E835 experiments at Fermilab.
- Hardware from these tests was shipped to GSI, has been offered to CERN BI as an inkind contribution.
- These should be inspected by someone with vacuum experience.
- Working with M. Macri from CERN.

В	С
quantity	device
found	device
1	rack mountable PC (Pentium IV)
1	PCI board for stepper motor control (PCI-7358)
1	Motion Interface board NI UMI-7774 (4 Axes) + cable SHC68-C68-S
1	GPIB board for PCI bus (NI-GPIB+)
2	cRIO DI board NI 9425 + connector NI 9933
2	cRIO DO board NI 9477 + connector NI 9933
1	cRIO Analog Input board NI 9205 with accessories
1	cRIO Analog Output board NI 9264
1	cRIO Serial Interface Module NI 9870
1	cRIO Serial Interface Module NI 9871
2	cRIO NI 9074
	_beam dump:
1	vacuum chamber
5	turbo-pump Varian Navigator 1001 + controller Turbo-V1000HT
2	turbo-pump Varian Navigator 551 + controller Turbo-V550
1	Pfeiffer calibrated leak valve
?	Varian vacuum gauge
	_E835 target:
1	vacuum chamber
2	Elettrorava 3500 turbo pump + electronic converter
10	Leybold 1000 turbo pumps + controller Turbotronik NT1000
1	gate valve VAT DN250
?	vacuum gauge
1	Cryocooler APD + Compressor HC-4
1	quadrupole mass spectrometer Stanford Research
1	Cryocooler Leybold "Coolpower 10MD" + accessories
	_forepumps:
1	roots pump LH Ruvac RA5001
1	roots pump LH Ruvac WAU1000
2	rotary vane pump LH Trivac D65B

LISOL In-Gas-Jet-Laser Spectroscopy


Info from Amir S


- De Laval nozzle with a throat diameter of 1 mm producing a gas jet with an effective Mach number
 5.5 and jet diameter of 3.5mm.
- The gas cell and extraction chamber are maintained at a working pressure of 350mbar and 1E-4mbar.

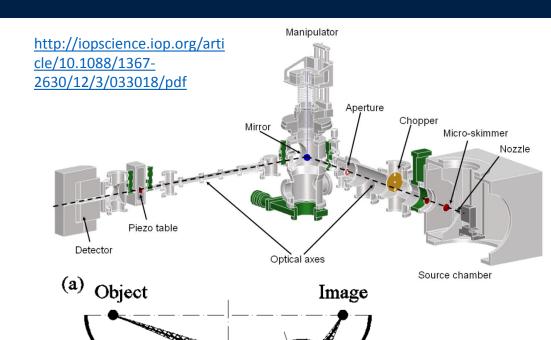
Can we use a gas jet for the BGV?

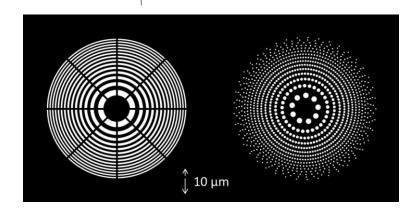
- Beam Gas Vertexing Monitor
- Recently developed and installed at LHC p4
- Uses background Neon gas target over 2m at 10⁻⁷ mbar.
- Secondary particles are detected by detector chips, and the beam *profile* can then be reconstructed.
- Can we replace this with a more dense gas jet over some cm, and a pressure of ~10⁻⁶ mbar?
 This should give a similar cross section.
- As fluorescence is not important, could this be effective with a clustered jet?

Other Jet focusing methods

How can gas-jet beam instrumentation be applied to future high energy machines?

Mirror Focusing


Demonstrated focusing of a He gas jet


Cluster Jets

Jet stable over a longer distance

Zone Plates

- H and He jets have been focused using zone plates.
- Using principles of wave-particle duality, works best with smaller particles (impact on de Broglie wavelength)

