

Injector requirements for LE storage ring upgrade projects

Zhe Duan

Institute of High Energy Physics, CAS

ARIES Workshop "Beam Tests and Commissioning of Low Emittance Storage Rings"

18-20 Feburary 2019, KIT, Germany

Beam tests and commissioning of Low Emittance Storage Rings, KIT, 18th Feb 2019

High Energy Photon Source

Typical injectors for 3rd Generation Light Sources

To deliver a full energy beam with a "reasonable" small emittance to SR

• Off-axis (pulsed bump) injection into the storage ring

 $A \ge 6\sigma_{inj} + 5\sigma_{sto} + septum and tolerance(> 3~4mm)$

- SR Acceptance > 10 mm
- SR emittance: 1 ~ 10 nm
- Relaxed tolerance for injected beam emittance
- Linac + booster as a cost effective design
 - Booster E_{ext} / E_{inj} : 10 ~ 30
 - Booster emittance: 10 nm ~ 150 nm level
 - Accumulation in SR requires only moderate charge in

the injector

Taken from A. Jankowiak, FLS2012

2

Trend in horizontal acceptance in LESRs (incomplete list)

The DA of NSLS-II & MAX IV are measurement results, others are tracking results with errors.

Generally, there is a compromise between brightness (emittance, matching of electron/photon phase space), dynamic aperture and Touschek lifetime in the lattice optimization.

The emittances of existing 3GLS boosters could be awkward, a reduction in injected beam emittance is in favor of a relaxed requirement of DA, beneficial for overall machine performance.

Zhe Duan, Injector requirements for LE storage ring upgrade projects

Reduction of injected beam emittance

- Use a full energy linac as the injector
 - Very small emittance (< 1 nm rms), short bunch, ideal for accumulation schemes
 - Costly, shared with on-site FEL/short pulse facility
 - MAX IV, Spring-8-II, HALS

Beam Parameters (8GeV)

K. Sotoume, talk on USR 2012.

Emittance: ~ 60 pmrad (projected) Energy Spread: 0.05 % (rms) Bunch Length: < 100 fs (rms) Electron Charge: ~ 300 pC Repetition Rate: 1 Hz (~ 60 Hz)

Reduction of injected beam emittance

- Modification of existing injector
 - Lower emittance design: stronger focusing, dispersion at straights
 - Off-energy operation:
 - Separate-function FODO -> Combined-function FODO
 - Emittance exchange in the booster / transport line *P. Kuske, talk on IPAC'16*

Will be covered in detail in Nicola/Simon's talk

- Booster redesign / new dedicated accumulator ring
 - Same tunnel w/ SR vs. Separate tunnels w/ SR
 - Lattice structure:
 - Separate-function FODO vs. combined-function FODO
 - DBA, TBA cells as in 3GLSs ? ALS-U accumulator resembles ALS design
- Injected beam emittance could be pushed down to nm-level, further reduction doesn't help relax DA requirement or in other aspects, as far as cost/benefit ratio is concerned.

Collection of injection schemes

Full charge injector for medium energy LESRs

- Bunch train swap-out to cope with a short lifetime, and consistent with relatively fixed filling pattern
- Addition of a dedicated full-energy accumulator ring in ALS-U, Diamond-II(optional)
- Full energy accumulator vs booster
 - Much reduced emittance (a factor of 10 ~ 100 smaller)
 - Optimized to accumulate more bunch charge
 - Could be costly for 6 GeV LESRs

I.P.S Martin, and R. Bartolini, IPAC'18, THPMF008

Figure 2: Illustration of the planned swap-out process between the full energy accumulator and the storage ring of ALS-U.

Zhe Duan, Injector requirements for LE storage ring upgrade projects

Full charge injector for high energy LESRs

• Bunch-by-bunch swap-out to reduce injection transient and permit flexible filling patterns

Machine	High brightness mode	Timing (high bunch charge) mode
APS-U	324 bunches, 2.3 nC/bunch	48 bunches, 15.3 nC/bunch
HEPS	680 bunches, 1.3 nC/bunch	63 bunches, 14.4 nC/bunch

APS-U: improvements of existing low-energy accumulator ring + booster to deliver high bunch charge, key issues include

- Ion effects in PAR
- Long bunch extracted from PAR
- Heavy beam-loading at booster injection

APS-U injectors for high charge operation

Full charge injector for high energy LESRs

• Bunch-by-bunch swap-out to reduce injection transient and permit flexible filling patterns

Machine	High brightness mode	Timing (high bunch charge) mode
APS-U	324 bunches, 2.3 nC/bunch	48 bunches, 15.3 nC/bunch
HEPS	680 bunches, 1.3 nC/bunch	63 bunches, 14.4 nC/bunch

HEPS: "Charge recovery" in the booster at 6 GeV Z. Duan et al., IPAC'18, THPMF052

- Only a moderate charge (up to 5 nC) is captured in the booster, relax challenges to capture and accelerate 15~20 nC bunches at the booster injection energy
- Accumulation at the flat-top allows multi-bunch filling in the booster, to cope with a small beam lifetime
- The performance of booster also working as a full energy accumulator ring looks promising.

Full charge injector for high energy LESRs

PETRA IV considerations, J. Keil, talk on this workshop

Injection and Booster

Injection scheme

- Dynamic aperture with realistic errors too small for off-axis injection
- Horizontal on-axis swap-out injection in straight SE
- Injection of 80 bunch trains; 20 or 1 bunches per train

Booster synchrotron DESY IV >

- DESY II nat. emittance (ε_v~335 nm·rad) too large
- New design of a 6 GeV booster with 19 nm rad @ 6 GeV in same tunnel using CF magnets (dipole, guadrupole, sextupole)
- Goal: deliver 5.10¹⁰ particle per bunch
- Accumulation in PIA II at 700 MeV
- Dump of the extracted PETRA IV bunch train; recycling?

Joachim Keil | Lattice Design, Commissioning and Operation Challenges of PETRA IV | 18.2.2019 | Page 9

B = 1600

B=80

Robust top-up operation

- Injectors are expected to work at least as stable as in 3GLSs.
- It could be challenging for swap-out injection to reach the same level of beam current stability as in accumulation schemes.
- Short lifetime + full charge injector (swap-out), injector reliability could also be a concern.

M. Borland, NAPAC2016, WEPOB02

Figure 4: Total current vs time for the first week of s Figure 5: Cumulative distribution of unavailability of 180 igure 6: Cumulative distribution of interval between two lated operation for 48-bunch (top) and 324-bunch (bot mA for different fill modes and rf choices. modes with round beams and existing rf systems.

Zhe Duan, Injector requirements for LE storage ring upgrade projects

Injector parameters of 3GLSs /LE upgrade and greenfield LESRs (incomplete list)

3 rd Generation Light Source				Low emittar	Low emittance upgrade project						
Name	Energy (GeV)	Ring Nat. emittance (nm)	Booster emittanc (nm)	Name	Energy (GeV)	Ring Nat. Emittance (pm)	Injection scheme	Injector Modification			
ALS	2	2	140	ALS-U	2	109	Swap-out	New accumulator ring			
SLS	2.4	5.5	9	SLS-II	2.4	102	Off-axis	Emittance exchange?			
SOLEIL	2.75	4	150	SOLEIL Upgrade	2.75	72	MKI Long. inj	New booster design?			
ELETTRA	2 ~ 2.4	7	226 / 166 @2.5 Ge ^v	ELETTRA / 2.0	2 2.4	250 @ 2 GeV	Off-axis	None in preCDR			
ESRF	6	3.8	120	ESRF-EBS	6	135	Off-axis	Off-energy operation, round beam			
APS	7	2.5	132	APS-U	6	42	Swap-out	Off-energy operation			
Spring-8	8	3.4	230	Spring8-II	6	157	Off-axis	Use linac injector			
PETRA III	6	1.3	335	PETRA IV	6	17	Swap-out	New booster			
Green field projects											
Machine		Energy (GeV)	Rin (pn	g Nat. mittance ı)	Injection	scheme	Injector type	Injector emittance(nm)			
MAX IV		3	0.3	3	ΜΚΙ		linac	~0.7			
Sirius		3	0.2	4	ΜΚΙ		Linac + booster	3.47			
HEPS		6	34		Swap-ou	t	Linac+ booster	34			

- A low emittance injector is generally favored for LE upgrade projects
 - Different approaches are available
 - Choice should be made based on cost/benefit evaluation.
 - Successful commissioning and operation of 3GLSs gave us confidence to commission a low emittance booster in a relatively short time.
- Swap-out injection promises higher brightness/less disturbance, but also introduces nontrivial challenges to injector design and operation
 - Full charge injector: dedicated accumulator ring or using booster
 - Challenges remain to deliver ~ 15 nC bunches with a high efficiency
 - Potential concerns: Injector charge variation, hardware reliability

Thank you for your attention!