# Superconducting wigglers and undulators

Mezentsev N. – BINP Gluskin F. - APS

# Superconducting shifters and multipole wigglers at the BINP

#### Types of superconducting magnet systems used as generators of synchrotron radiation:

Superconducting 3 (5) pole shifters with 7-10 Tesla field: manufactured 5, 3 of them are working for about 20 years.

Superconducting high field 7-7.5 Tesla multipole wigglers: fabricated- 4, 3 of them are working and 1 is ready to put in operation this year.

Superconducting multipole wiggler with a medium period of 48 to 60 mm and field of 3-4.3 Tesla: fabricated- 10, 8 of them are working and 2 are ready to put in operation this year.

Superconducting multipole wiggler with a short period of 30-34 mm and field of 2-2.2 Tesla: fabricated 2, both are working.

Superconducting undulator with period 15.6 mm and field 1.2 Tesla is under fabrication now. Should be ready this year.

#### International collaboration on SR generators



7 Tesla shifters for BESSY-2 light source (Berlin). 2000,2001



17 poles 7 Tesla, λ=148 mm superconducting wiggler for BESSY-2 light source (Berlin) 2002

#### Germany:



44-pole 2.5 Tesla, λ=48 mm superconducting wiggler for ANKA light source (Karlsruhe) 2014



22-pole 7Ttsla,  $\lambda$ =125 mm superconducting wiggler for DELTA (Dortmund) 2019







15-pole 7.5 Tesla,  $\lambda$ =198 mm superconducting wiggler for LSU CAMD light source (Baton Rouge) 2013



7 Tesla superconducting shifter for LSU CAMD light source (Baton Rouge) 1997



49-pole 3.5 Tesla, λ=60 mm superconducting wiggler for ELETTRA light source (Trieste) 2002

#### England

#### Canada



49-pole 3.5 Tesla,  $\lambda$ =60 mm superconducting wiggler for Diamond Light source. 2006



49-pole 4.2 Tesla,  $\lambda$ =48 mm superconducting wiggler for Diamond Light source. 2009



27-pole 4.2 Tesla, λ=48 mm superconducting wiggler for Canadian Light source. 2007 63-pole 2.2 Tesla, λ=32 mm superconducting wiggler for Canadian Light source. 2005

#### **Brasil**



Australia

49-pole 4.2 Tesla, λ=52mm superconducting wiggler

for AS light source. 2012 35-pole 4.2 Tesla, $\lambda$ =60mm superconducting wiggler for LNLS light source. 2009

119-pole 2.1 Tesla, λ=30 mm superconducting wiggler for ALBA light source. 2010

Spain



Japan

10 Tesla superconducting shifter for SPring-8. 2000

#### **Republic Korea**



7.5 Tesla superconducting shifter for PLS light source. 1996.

# History of superconducting magnet activity for 40 years

| 1979 – first in the world 3.5 Tesla superconducting 20 pole wiggler (SCW) for VEPP-3 | NbTi/Cu  |
|--------------------------------------------------------------------------------------|----------|
| 1984 – 5 pole 8 Tesla superconducting wiggler for VEPP-2                             | NbTi/Cu  |
| 1985 – 4.5 Tesla Superconducting Wave Length Shifter (WLS) for Siberia-1, Moscow     | NbTi/Cu  |
| 1992 – 6 Tesla superbend (SB) prototype for compact storage rings                    | NbTi/Cu  |
| 1996 - 7.5 Tesla superconducting WLS for PLS, South Korea                            | NbTi/Cu  |
| 1997 - 7.5 T superconducting WLS with fixed point of radiation for CAMD-LSU (USA)    | NbTi/Cu  |
| 2000 – 10 Tesla WLS for Spring-8, Japan                                              | Nb3Sn/Cu |
| 2000 – 7 Tesla WLS with fixed radiation point for BESSY-2, Germany                   | NbTi/Cu  |
| 2001 – 7 Tesla WLS with fixed radiation point for BESSY-2, Germany                   | NbTi/Cu  |
| 2002 – 3.5 Tesla 49 pole SCW for ELETTRA, Italy                                      | NbTi/Cu  |
| 2002 – 7 Tesla 17 pole SCW for BESSY-2, Germany                                      | NbTi/Cu  |
| 2004 – 9 Tesla Superbend for BESSY-2, Germany                                        | Nb3Sn/Cu |
|                                                                                      |          |

#### **Red-** in operation, black- not in operation

# History of superconducting magnet activity for 40 years

| 2005 – 13 Tesla superconducting solenoids for VEPP-2000          | Nb3Sn/Cu |
|------------------------------------------------------------------|----------|
| 2005 – 2 Tesla 63 pole SCW for CLS, Canada                       | NbTi/Cu  |
| 2006 – 3.5 Tesla 49 pole for DLS, England                        | NbTi/Cu  |
| 2006 – 7.5 Tesla 21 pole SCW for Siberia-2, Moscow               | NbTi/Cu  |
| 2007 – 4.2 Tesla 27 pole SCW for CLS, Canada                     | NbTi/Cu  |
| 2009 – 4.2 Tesla 49 pole SCW for DLS, England                    | NbTi/Cu  |
| 2009 – 4.1 Tesla 35 pole SCW for LNLS, Brasil                    | NbTi/Cu  |
| 2010 - 2.1 Tesla 119 pole SCW for ALBA, Spain                    | NbTi/Cu  |
| 2012 - 4.2 Tesla 63 pole SCW for AS (Australia)                  | NbTi/Cu  |
| 2013 - 7.5 Tesla 15 pole wiggler for LSU CAMD, USA               | NbTi/Cu  |
| 2014 - 2.5 Tesla 44 pole wiggler for ANKA-CATACT, Germany        | NbTi/Cu  |
| 2016 - 3 Tesla 72 pole wiggler for ANKA/CLIC, Germany/CERN       | NbTi/Cu  |
| 2018 – 7 Tesla 22 pole wiggler for DELTA, Dortmund, Germany      | NbTi/Cu  |
| 2018 – 3 Tesla 54 pole 2 wigglers for Siberia -2, Moscow, Russia | NbTi/Cu  |

**Red-** in operation, green- ready to install

# 3 groups of SC wiggler

High field SC multipole wigglers (B=7-7.5 Tesla,  $\lambda$ ~125-200 mm)

Medium field SC wigglers (B=3.5-4.2 Tesla,  $\lambda$ ~48-60 mm)

Short period SC wigglers (B=2-2.2 Tesla,  $\lambda$ ~30-34 mm







**High field long period superconducting multipole wigglers** are used for production of hard X-rays on storage rings with low electron energy (BESSY 1.7 GeV, CAMD LSU 1.35 GeV, Siberia-2 2.5 GeV, Dortmund university 1.5GeV)



7.5 Tesla 15 pole superconducting wiggler (CAMD LSU, USA)



#### Magnetic field distribution at different field levels



The installation of an insertion device with so high field at an accelerator working energy of 1.35 GeV is quite a complex accelerating challenge, as considerable effort was required for compensation of the influence of the magnetic field on the magnetic structure of the storage ring. All problems connected with the influence of the wiggler field on the beam dynamics were successfully solved during the wiggler commissioning with electron beam.

A PRELIMINARY REPORT FROM LOUISIANA STATE UNIVERSITY CAMD STORAGE RING OPERATING WITH AN 11 POLE 7.5 TESLA WIGGLER R. S. Amin et al, Proceedings of IPAC2015, Richmond, VA, USA

#### Superconducting multipole wigglers with medium period

#### Australian Light Source

Angular-spectral photon distribution from the wiggler (63 poles):  $B_0=4.2T$ , E=3 GeV, I=0.2 A,







Assembled magnet



140 m long Imaging and medical beamline



End of beamline- extraction window

#### Short period superconducting multipole wigglers



#### 119-pole 2.1 Tesla SC wiggler for ALBA CELLS



1/2 of the wiggler magnet



Magnet pole – main element of the magnet http://accelconf.web.cern.ch/AccelConf/I PAC2011/papers/thpc172.pdf

#### Cryogenic system of SC insertion devices progress (Budker INP) **Cryogenic system** 1979





A general view of the snake for the storage ring VEP 1 - liquid helium supply pipe, 2 - current leads, 5 war, 4 - liquid nitrogen, 5 - liquid helium, 6 - superc

Liquid helium consumption ~ 4 l/hr

#### 2007



Liquid helium consumption < 0.03 l/hr



2002



Liquid helium consumption ~ 0.6 l/hr

#### 2015



Indirect cooling system. Liquid helium used as cooling agent

> For initial cooling of the magnet thermal tubes on the basis of nitrogen and helium are developed, fabricated and tested.

# SCUs at the APS (on behalf Efim Gluskin)

- SCU0:
  - 16-mm period length
  - 0.33-m long magnet
  - Operation: Jan2013-Sep2016
- SCU1(SCU18-1):
  - 18-mm period length
  - 1.1-m long magnet
  - Operation: since May2015
- SCU18-2:
  - 18-mm period length
  - 1.1-m long magnet
  - Operation: since Sep2016.



SCU18-1 in Sector 1 of the APS ring.



Helical SCU in Sector 7 of the APS ring.

- LCLS R&D SCU:
  - 21-mm period length
  - 1.5-m long magnet
  - Project completed in 2016.

- Helical SCU:
  - 31.5-mm period length
  - 1.2-m long magnet
  - Installed in Dec2017.
  - Operation: since Jan2018

# **APS SCUs operational performance**

- SCUs have been essentially transparent to the APS SR beam
- Most quenches occur during unplanned beam dumps
- SCU0,18-2 quenches decreased dramatically after beam abort system added in January 2016

|         | λ    | # of    | р (т) | D (T) | р (т) | р (т) | D (T) |       | 2013  |       |       | 2014  |       |       | 2015  |       |       | 2016  |       |       | 2017 |  | 2018 |  |
|---------|------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|--|------|--|
|         | (mm) | periods |       | Run 1 | Run 2 | Run 3 | Run 1 | Run 2 | Run 3 | Run 1 | Run 2 | Run 3 | Run 1 | Run 2 | Run 3 | Run 1 | Run 2 | Run 3 | Run 1 | Run 2 |      |  |      |  |
| SCU0    | 16   | 20.5    | 0.8   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |  |      |  |
| SCU18-1 | 18   | 59.5    | 0.97  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |  |      |  |
| SCU18-2 | 18   | 59.5    | 0.97  |       |       |       |       |       |       |       |       |       |       | (     |       |       |       |       |       |       |      |  |      |  |
| HSCU    | 31.5 | 38.5    | 0.41  |       |       |       |       |       |       |       |       |       |       |       |       |       |       | (     |       |       |      |  |      |  |

|          |                  | :          | SCU0 and S | CU18-2                     |             | SCU18-1    |        |                    |             |       | HSC  | U                  |             |                                                                                                                    |
|----------|------------------|------------|------------|----------------------------|-------------|------------|--------|--------------------|-------------|-------|------|--------------------|-------------|--------------------------------------------------------------------------------------------------------------------|
| Year     | APS<br>delivered | Oper.      | Down       | quench                     | avail.<br>% | Oper.      | Down   | quench             | avail.<br>% | Oper. | Down | quench             | avail.<br>% |                                                                                                                    |
| 2013     | 4871 h           | 4189 h     | 20 h       | <u> 34 + 3</u>             | 99.5        | -          | -      | -                  | -           | -     | -    | -                  | -           | <ul> <li>e-beam has never been lost due to self-quenches</li> <li><i>Red = beam dump-induced quench</i></li> </ul> |
| 2014     | 4926 h           | 4391 h     | 174 h [1]  | <u>32</u> + <mark>2</mark> | 96.2        | -          | -      | -                  | -           | -     | -    | -                  | -           | Blue = non-beam dump, possible self-induced quench                                                                 |
| 2015     | 4940 h           | 4834 h     | 0 h        | <u> 26 + 1</u>             | 100         | 3059 h [2] | 0.1 h  | <b>5</b> + 0       | 99.997      | -     | -    | -                  | -           | [1] November: Partial loss of one cryocooler capacity                                                              |
| 2016     | 4941 h           | 4647 h [3] | 0 h        | <u>9</u> + 0               | 100         | 4585 h     | 0.3 h  | <i>11</i> + 1      | 99.990      | -     | -    | -                  | -           | <ul> <li>[2] Installed in May; operated May – Dec. 2015</li> <li>[3] SCU18-2 replaced SCU0 in Sep.</li> </ul>      |
| 2017     | 4840 h           | 4756 h     | 0 h        | <i>8</i> + 1               | 100         | 4818 h     | 0.75 h | <u>13 + 2</u>      | 99.984      | -     | -    | -                  | -           | SCU0 3310 h, SCU18-2 1337 h<br>[4] January 2018 through September 2018                                             |
| 2018 [4] | 3327 h           | 3236 h     | 5 h        | <u>11 + 1</u>              | 99.8        | 3199 h     | 0.59 h | <mark>9 + 2</mark> | 99.981      | 533 h | 0 h  | <mark>0 + 0</mark> | 100         |                                                                                                                    |
| Total    | 27845 h          | 26053 h    | 199 h      | <u> 120 + 8</u>            | 99.24       | 15661 h    | 1.74 h | <u> 29 + 3</u>     | 99.99       | 533 h | 0 h  | <u>0</u> + 0       | 100         |                                                                                                                    |

## **APS SCU cryostat**



#### Thermoshield with cryocoolers



# Planar SCU – "cold mass": LHe tank and undulator magnet



#### Planar SCU – magnet and vacuum chamber



# **Planar SCU: magnets/cores**

Existing magnet/beam vacuum chamber assembly.

Beam chamber is thermally isolated from both, top and bottom magnets, and cooled independently.

NbTi coils are cooled indirectly with LHe helium passing through channels in the magnet cores.







# **Phase errors control**

- The SCU field quality depends on:
  - Precise machining of a magnet core
  - Quality of conductor winding
  - Uniformity of the magnetic gap
- A dedicated R&D program was targeted at achieving a very uniform gap.
  - A gap correction scheme was developed and implemented using a set of mechanical clamps

| Undulator    | Measured phase<br>errors (º rms) |
|--------------|----------------------------------|
| SCU18-1      | 5*                               |
| SCU18-2      | 2                                |
| LCLS R&D SCU | 3.8                              |

\* without gap correction



Planar SCU magnetic assembly with a gap correction.



Measured phase errors in SCU18-1 and SCU18-2.

# SCAPE magnet and vacuum chamber design



### **SCAPE: 0.5m prototype tests**



- ٠
- 10 mm pole gap
- Four 0.5 m long magnets ٠
- Planar, circular, and elliptical ٠ modes were measured in a vertical LHe bath cryostat

# Nb<sub>3</sub>Sn short undulator prototype



**B-OST suggested the HT profile** modified by FNAL





- 0.6 mm diameter conductor with ٠ filament diameter of 35 microns
- No thick epoxy build-ups •
- HT cycle optimized ٠

#### Time, hr



# In-line double Nb<sub>3</sub>Sn unduator for APS





# **APS-U SCU Developments**

- The APS Upgrade includes four full-ID-length SCUs, each with two 1.8-m planar SCU magnets in series separated by either a phase shifter or a canting magnet.
- The APS Upgrade also includes one SCAPE SCU and re-uses one existing SCU.
- New long SCU cryostats will be modeled on the HSCU 2<sup>nd</sup>-generation design.



CAD model of long SCU in the APS-U.

# Thanks for attention