

# Charge Limit Simulations of the HEPS Accelerators

#### Haisheng Xu

#### on behalf of the HEPS Impedance and Collective Effects Study Group

Institute of High Energy Physics, CAS 19. 02. 2019

ARIES Workshop: "Beam Tests and Commissioning of Low Emittance Storage Rings", 18 – 20 February 2019, Karlsruhe, Germany

## Outlines

#### 1. Introduction

- 2. Charge Limit Simulations for HEPS Storage Ring
- 3. Charge Limit Simulations for HEPS Booster
- 4. Summary



#### Introduction

• High Energy Photon Source (HEPS) is designed as a 6-GeV storage-ring-based synchrotron light source.

| Main parameters                                                                                                            | Unit                                             | Value             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------|--|--|--|--|
| Beam energy                                                                                                                | GeV                                              | 6                 |  |  |  |  |
| Circumference                                                                                                              | m                                                | 1360.4            |  |  |  |  |
| Emittance                                                                                                                  | pm∙rad                                           | < 60              |  |  |  |  |
| Brightness                                                                                                                 | phs/s/mm <sup>2</sup> /mrad <sup>2</sup> /0.1%BW | >10 <sup>22</sup> |  |  |  |  |
| Beam current                                                                                                               | mA                                               | 200               |  |  |  |  |
|                                                                                                                            |                                                  |                   |  |  |  |  |
| ARIES Workshop: "Beam Tests and Commissioning of Low Emittance Storage Rings", 18 – 20 February 2019, Karlsruhe, Germany 3 |                                                  |                   |  |  |  |  |

#### Charge Limit for the HEPS Storage Ring

- Beam loss is the first thing to worry about, especially in the proposed high-charge operation scheme.
  - -The effects due to high charge, which may cause beam loss, are what we focus on here.
- Transverse single-bunch instability may lead to serious particle loss
- Transient effect right after injection especially for high-charge swapout injection is a newly coming problem in the proposed high-charge operation.
- Fast-beam ion instability may be a problem in the commissioning.



## Impedance Modeling

- Total impedance spectrum has been used in the calculations of the charge limit.
- Update of the impedance model is still ongoing since the more detailed engineering designs of components is on-going.



|                         | Elements                             | Number | Elements                                                | Number |  |
|-------------------------|--------------------------------------|--------|---------------------------------------------------------|--------|--|
|                         | Resistive wall                       | -      | In-vacuum IDs                                           | 7      |  |
| า                       | <u>Primary RF</u><br><u>cavities</u> | 5      | <u>Tapers of Out-</u><br><u>vacuum IDs</u>              | 14     |  |
|                         | <u>Harmonic</u><br><u>cavities</u>   | 2      | <u>BPMs</u>                                             | 576    |  |
|                         | <u>Vacuum</u><br>transitions         | 240    | Injection<br>kickers                                    | 10     |  |
|                         | <u>Bellows</u>                       | 1500   | Extraction<br>kickers                                   | 10     |  |
|                         | <u>Flanges</u>                       | 2064   | <u>Longitudinal</u><br><u>Feedback</u><br><u>kicker</u> | 1      |  |
| <b>\$0-001 + 3-10-1</b> | In-line absorbers                    | 600    | <u>Transverse</u><br><u>Feedback</u><br><u>kicker</u>   | 1      |  |
| 30                      | <u>Vacuum</u>                        | 288    |                                                         |        |  |
| nce                     | pumping ports                        |        | HEPS                                                    |        |  |



#### Transverse Single-Bunch Instability w/ 3<sup>rd</sup> Harmonic Cavity





ARIES Workshop: "Beam Tests and Commissioning of Low Emittance Storage Rings", 18 – 20 February 2019, Karlsruhe, Germany

HEPS



#### Transverse Single-Bunch Instability w/ 3rd Harmonic Cavity



#### Transverse Single-Bunch Instability w/ 3rd Harmonic Cavity

 SR damping time ≈ 3000 turns.

High-charge effects in the transient process after injection needs careful study<sup>[\*]</sup>.

7



ARIES Workshop: "Beam Tests and Commissioning of Low Emittance Storage Rings", 18 – 20 February 2019, Karlsruhe, Germany



#### Transverse Single-Bunch Instability w/ 3rd Harmonic Cavity

 SR damping time ≈ 3000 turns.

High-charge effects in the transient process after injection needs careful study<sup>[\*]</sup>.

7



ARIES Workshop: "Beam Tests and Commissioning of Low Emittance Storage Rings", 18 – 20 February 2019, Karlsruhe, Germany

• Single-bunch 15 nC, initial vertical offset  $y_{ini} = 300 \mu m$ , initial bunch length  $\sigma_{t-ini} = 40 \ ps$ , initial energy spread  $\sigma_{\delta-ini} = 0.001$ 



• Single-bunch 15 nC, initial vertical offset  $y_{ini} = 300 \mu m$ , initial bunch length  $\sigma_{t-ini} = 40 \ ps$ , initial energy spread  $\sigma_{\delta-ini} = 0.001$ 



- Initial vertical offset  $y_{ini} = 300 \mu m$ , initial bunch length  $\sigma_{t-ini} = 40 ps$ , initial energy spread  $\sigma_{\delta-ini} = 0.001$ , element-by-element tracking.
- Two different situations w/ and w/o bunch-by-bunch feedback system.
- Further systematic calculations are needed to optimize the injection efficiency at high bunch charge.



- Initial vertical offset  $y_{ini} = 300 \mu m$ , initial bunch length  $\sigma_{t-ini} = 40 ps$ , initial energy spread  $\sigma_{\delta-ini} = 0.001$ , element-by-element tracking.
- Two different situations w/ and w/o bunch-by-bunch feedback system.
- Further systematic calculations are needed to optimize the injection efficiency at high bunch charge.



- Initial vertical offset  $y_{ini} = 300 \mu m$ , initial bunch length  $\sigma_{t-ini} = 40 ps$ , initial energy spread  $\sigma_{\delta-ini} = 0.001$ , element-by-element tracking.
- Two different situations w/ and w/o bunch-by-bunch feedback system.
- Further systematic calculations are needed to optimize the injection efficiency at high bunch charge.



ARIES Workshop: "Beam Tests and Commissioning of Low Emittance Storage Rings", 18 – 20 February 2019, Karlsruhe, Germany

• Analytic estimations have been carried out by assuming different beam currents and different vacuum pressures:

 $-\tau_y \approx 18 \text{ ms}$ 

$$\mathbf{y} \ll \mathbf{\sigma}_{\mathbf{y}}$$

$$\frac{1}{\tau_{e}} \approx \frac{1}{\tau_{c}} \frac{c}{4\sqrt{2}\pi L_{sep} n_{b} a_{bt} f_{i}}$$

$$\mathbf{y} \gg \mathbf{\sigma}_{\mathbf{y}}$$

$$\frac{1}{\tau_{H}} \approx \frac{1}{\tau_{c}} \frac{c}{2\pi f_{i} L_{sep} n_{b}^{3/2}}$$

$$\frac{1}{\tau_{c}} = \frac{4d_{gas} \sigma_{ion} \beta N_{e}^{3/2} n_{b}^{2} r_{e} r_{p}^{1/2} L_{sep}^{1/2} c_{sep}^{1/2}}{3\sqrt{3}\gamma \sigma_{y}^{3/2} (\sigma_{y} + \sigma_{x})^{3/2} A^{1/2}}$$

T.O. Raubenheimer and F. Zimmermann, Fast Beam-Ion Instability I: Linear Theory and Simulations, SLAC-PUB-6740, Phys. Rev. E, Vol. 52, 5, pp. 5487–5498 (1995).
 G.V. Stupakov, T.O. Raubenheimer and F. Zimmermann, Fast Beam-Ion Instability II: Effect of Ion Decoherence, SLAC-PUB-6805, Phys. Rev. E, Vol. 52, 5, pp. 5499–5504 (1995).
 G.V. Stupakov, A Fast Beam-Ion Instability, Proceedings of the International Workshop on Collective Effects and Impedance for B-Factories (CEIBA95), KEK Proceedings 96-6, August 1996, p. 243 (1996)

ARIES Workshop: "Beam Tests and Commissioning of Low Emittance Storage Rings", 18 – 20 February 2019, Karlsruhe, Germany

). HEPS

 Analytic estimations have been carried out by assuming different beam currents and different vacuum pressures:





T.O. Raubenheimer and F. Zimmermann, Fast Beam-Ion Instability I: Linear Theory and Simulations, SLAC-PUB-6740, Phys. Rev. E, Vol. 52, 5, pp. 5487–5498 (1995). G.V. Stupakov, T.O. Raubenheimer and F. Zimmermann, Fast Beam-Ion Instability II: Effect of Ion Decoherence, SLAC-PUB-6805, Phys. Rev. E, Vol. 52, 5, pp. 5499–5504 (1995). G.V. Stupakov, A Fast Beam-Ion Instability, Proceedings of the International Workshop on Collective Effects and Impedance for B-Factories (CEIBA95), KEK Proceedings 96-6, August 1996, p. 243 (1996).

ARIES Workshop: "Beam Tests and Commissioning of Low Emittance Storage Rings", 18 – 20 February 2019, Karlsruhe, Germany

- Simulation by implementing weak-strong model:
  - -200 mA, 680 continuous bunches;
  - 'weak' : each electron bunch is represented as 1 macroparticle;
  - -1 nTorr;
- Bunch-by-Bunch feedback system is foreseen to cure the FBII.





- Simulation by implementing weak-strong model:
  - -200 mA, 680 continuous bunches;
  - 'weak' : each electron bunch is represented as 1 macroparticle;
  - -1 nTorr;
- Bunch-by-Bunch feedback system is foreseen to cure the FBII.



## Charge Limit for the HEPS Booster

- The requirement of high single-bunch charge increases the risk of particle loss in the booster.
- Transverse single-bunch instability is what we pay much attention here.
- The proposed ramping process is based on the the idea of multi-bunch operation in the booster.
  - -499.8 MHz RF cavity
    - ≻V<sub>peak</sub>= 2MV @ 500 MeV
    - ≻V<sub>peak</sub>=8 MV @ 6 GeV
  - -Ramping curve:
    - >200ms @ 500MeV for injecting the LINAC beam to the booster
    - ≻400ms for energy ramping up to 6GeV
    - ▶200ms@6GeV for beam re-injection and extraction
    - ➤200ms for energy ramping down to 500 MeV







## Impedance Modeling

- A preliminary impedance budget including many key components, has been created for the HEPS booster.
- Update of the impedance model is still on-going since the more detailed engineering designs of components is on-going.

| Contribution        | $Z_{\parallel}/n$ [m $\Omega$ ] | <i>k<sub>l</sub></i> [V/pC] | $k_y$ [V/pC/m] |
|---------------------|---------------------------------|-----------------------------|----------------|
| Resistive Wall      | 101.1                           | 1.9                         | 736            |
| RF cavities         | -12.8                           | 10.1                        | 80.0           |
| Flanges             | 17.0                            | 5E-5                        | 60.5           |
| Bellows             | 11.8                            | 7E-4                        | 42.0           |
| BPMs                | 9.5                             | 0.03                        | 33.5           |
| Kickers (Inj & Ext) | -2.4                            | 0.6                         | 186.2          |
| Total               | 124.2                           | 12.6                        | 1138.2         |



#### **Transverse Impedance**





## Transverse Single-Bunch: Ramping, Chromaticity



ARIES Workshop: "Beam Tests and Commissioning of Low Emittance Storage Rings", 18 – 20 February 2019, Karlsruhe, Germany

Transverse Single-Bunch: Ramping, Chromaticity

- The one-turn map is now used in the tracking of the booster.
- The blow-up of beam size happens at about the injection energy.
- The beam is getting more stable as the energy ramps.
- Landau damping introduced by the nonlinearities of the booster lattice help significantly stabilize the beam, especially at low energy.
- In the next step, more detailed element-by-element tracking is planed.



#### Summary & Outlook

- Most of the work is still on-going.
- Transverse single-bunch instability in the HEPS storage ring has been studied under the condition w/ (+5,+5) chromaticity and w/ 3<sup>rd</sup> harmonic cavity. The threshold current is high enough. However, the beam blow-up right after injection needs careful study.
- Preliminary study of the transient effect after injection shows that this effect strongly limits the single-bunch charge. Further systematic studies are needed.
- The proposal of high-charge operation in the storage ring and the idea of implementing swap-out injection scheme introduces difficulty to the charge limit in the booster.
- Systematic studies of the transient effects after injection are needed.



