Low emittance and luminosity tuning in SuperKEKB

K. Ohmi (KEK) Beam test and commissioning of Low Emittance storage rings, 18-20 Feb, 2019, Karlsruhe, Germany

Thanks to Y. Funakoshi, K. Hirosawa, H. Koiso, A. Morita, Y. Ohnishi, H. Sugimoto, D. Zhou

SuperKEKB

- Asymmetric e+e- collider with energy 4 and 7 GeV.
- Collision with large Piwinski angle, $\phi_c \sigma_z / \sigma_x = 26$.
- Arc design ~ Very high current 3rd generation light source
- Interaction Point : Extremely low β^* , 3cmx0.3mm.
- Very large chromaticity and local correction in the Interaction Region.

Machine Parameters

2011/July/20	LER	HER	unit	
E	4.000	7.007	GeV	
l	3.6	2.6	А	
Number of bunches	2,500			
Bunch Current	1.44	1.04	mA	
Circumference	3,016.315		m	
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/11.5(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	83		mrad	
α _p	3.25x10 ⁻⁴	4.55x10 ⁻⁴		
σδ	8.08(7.73)x10 ⁻⁴	6.37(6.31)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σ _z	6.0(5.0)	5(4.9)	mm	():zero current
Vs	-0.0247	-0.0280		
v_x/v_y	44.53/44.57	45.53/43.57		
Uo	1.87	2.43	MeV	
T _{x,y} /T _s	43.1/21.6	58.0/29.0	msec	
ξ _× /ξ _γ	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x10 ³⁵		cm ⁻² s ⁻¹	

X-y coupling

• Eigenvector to resolve x-y coupling, R.

 $\boldsymbol{x} = RB\boldsymbol{X}$ $\boldsymbol{X}(s+C) = U\boldsymbol{X}(s)$ $\boldsymbol{U} = \begin{pmatrix} U_X & 0\\ 0 & U_Y \end{pmatrix}$ $\boldsymbol{U}_X = \begin{pmatrix} \cos \mu_X & \sin \mu_X\\ -\sin \mu_X & \cos \mu_X \end{pmatrix}$ $\boldsymbol{X}(s+C) = M(s)\boldsymbol{X}(s)$ $\boldsymbol{M}(s) = R(s)B(s)UB^{-1}(s)R^{-1}(s)$

• R(s) as Twiss parameters

$$R(s) = \begin{pmatrix} r_0 & 0 & r_4 & -r_2 \\ 0 & r_0 & -r_3 & r_1 \\ -r_1 & -r_2 & r_0 & 0 \\ -r_3 & -r_4 & 0 & r_0 \end{pmatrix} \qquad B = \begin{pmatrix} B_X & 0 \\ 0 & B_Y \end{pmatrix} \qquad B_X = \begin{pmatrix} \sqrt{\beta_X} & 0 \\ -\alpha_X/\sqrt{\beta_X} & 1/\sqrt{\beta_X} \end{pmatrix}$$
$$r_0 = \sqrt{1 - r_1 r_4 + r_2 r_3}$$

• Beam envelope matrix

$$\langle \mathbf{X}(s)\mathbf{X}^{t}(s) \rangle = \begin{pmatrix} \varepsilon_{X} & 0 & 0 & 0 \\ 0 & \varepsilon_{X} & 0 & 0 \\ 0 & 0 & \varepsilon_{Y} & 0 \\ 0 & 0 & 0 & \varepsilon_{Y} \end{pmatrix} \qquad \langle \mathbf{X}(s)\mathbf{X}^{t}(s) \rangle = R(s)B(s)\langle \mathbf{X}\mathbf{X}^{t} \rangle B^{t}(s)R^{t}(s) \\ \mathbf{X}^{t} = (x, x', y, y') \qquad \langle yy \rangle = \sigma_{y}^{2}$$

Normal mode X,Y and emittance

- Normal mode with eigenvalues, $\exp(\pm i\mu_{X,Y})$.
- Betatron motion, oscillation with frequency, $\mu_{X,Y}$.
- Emittance rms of the normal mode amplitude, $\varepsilon_X = \langle |X|^2 \rangle$, $\varepsilon_Y = \langle |Y|^2 \rangle$.
- Emittance is determined by radiation excitation and damping along the normal mode.

$$\varepsilon_Y \propto \oint \frac{\gamma_Y \eta_Y^2 + 2\alpha_Y \eta_Y \eta_Y' + \beta_Y \eta_Y'^2}{\rho^3} ds$$

$$\boldsymbol{\eta}_{X,Y}(\mathbf{s}) = R^{-1}(s)\boldsymbol{\eta}_{X,Y}(\mathbf{s})$$

- To reduce ϵ_{y} X-y coupling in bend should be suppressed.
- Global coupling determines vertical emittance.

Local x-y coupling and beam size

• Beam size at location given Twiss parameters.

$$\sigma_y^2(s) \approx \sigma_Y^2 + \sigma_X^2 \left[\frac{r_2^2}{\beta_x^2} + r_1^2 \right] + \left(\eta_y \sigma_\delta \right)^2$$

 $\sigma_Y^2(\mathbf{s}) = \beta_Y(s)\varepsilon_Y \qquad \sigma_X^2(\mathbf{s}) \approx \sigma_X^2(\mathbf{s}) = \beta_X(s)\varepsilon_X$

- Local vertical beam size consists of the vertical emittance and local x-y coupling R(s).
- x-y coupling at IP enhances emittance growth due to the beam-beam interaction.
- Beam size at Interaction Point determines luminosity performance.

Local coupling and beam distribution

R3 and R4 are explained by the same picture for p_v .

X-y coupling correction in SuperKEKB

- Exciting 6 horizontal steerings one by one, measure closed orbit distortion in each.
- Vertical orbit is corrected by skew quads or vertical bump of sextupoles.

- r1 and r2 at every s is corrected, r3 and r4 are corrected as the result.
- X-y coupling in LER is somewhat worse than HER.

Optics Correction Summary

	Phase 1		Phase 2	
	LER	HER	LER	HER
$(\Delta \beta_{x,y} / \beta_{x,y})^{\mathrm{rms}} \ [\%]$	3/3	3/3	2 / 4	3 / 3
$\left(\Delta y\right)^{\mathrm{rms}} / \left(\Delta x\right)^{\mathrm{rms}}$	0.009	0.006	0.014	0.008
$(\Delta \eta_{x,y})^{\mathrm{rms}}$ [mm]	8 / 2	11 / 2	10 / 4	9/3
$\Delta \xi_{x,y}$	2 / -4	< 1 / < 1	2/3	< 1 / 3

HER $(\beta_x^*, \ \beta_y^*) = (100 \text{ mm}, \ 3 \text{ mm})$ **LER** $(\beta_x^*, \ \beta_y^*) = (200 \text{ mm}, \ 3 \text{ mm})$

SuperKEKB Phase 2 まとめミィーティング

Vertical Emittance in Phase 2

- Emittance of HER is improved compare with Phase 1.
- Emittance of LER is larger than that of Phase 1. Note: Residual of XY coupling is larger compare with Phase1.

Beam size measurement using XRM

X-ray beam line under construction at LER

Masks: ~20 μm Au on 600 μm CVD diamond substrate

HER X-Ray Beam Profile Monitor

Pixel

⊸σյ(μm)

V. Image Profile

Norma

Beam life time vs vertical emittance

I_b=1mA/bunch-> N_e=6x10¹⁰/bunch

Touschek effect can be observed in LER.

SuperKEKB as a low emittance collider

- Compatibility of low emittance, beam-beam tune shift and luminosity
- Collision with Large crossing angle to avoid large horizontal tune shift.
- Extreme small β_{y} .
- Small x-y coupling for keeping vertical beam-beam tune shift

$$\Delta v_x = \frac{N_e r_e}{2\pi\gamma_p} \frac{\beta_x}{\sigma_x(\sigma_x + \sigma_y)} \qquad \qquad \Delta v_y = \frac{N_e r_e}{2\pi\gamma_p} \frac{\beta_y}{\sigma_y(\sigma_x + \sigma_y)}$$

$$L = \frac{N_e N_p}{4\pi} \frac{f_{col}}{\sigma_x \sigma_y} = \frac{N_p \gamma_p \Delta \nu_y}{2r_e \beta_y} f_{col}$$

Effective horizontal beam size

$$\sigma_x = \sqrt{\beta_x \varepsilon_x + (\phi_c \sigma_z)^2}$$

$$\phi_c: \text{ half crossing angle}$$

Commissioning of SuperKEKB, Phase I

- Low emittance operation
 - X-y coupling, vertical dispersion correction.
 - X-ray beam size monitor using coded aperture.
 - Global X-y coupling <1% is achieved.
 - I₊=1A and I₋=0.7 A achieved without emittance growth.
- Check electron cloud instability, and other instabilities.
 - EC Instability was observed early stage, but suppressed by winding solenoids in bellow section not coated by TiN.
 - Beam size blow-up due to electron cloud is suppressed by 1A at least. N_{bunch} =1500. 1mA/bunch=6x10¹⁰/bunch, C=3016m

Commissioning of SuperKEKB, Phase II

• β squeezing

History of SuperKEKB Phase 2

5.55 x 10³³/cm²/s (βy*3mm, LER: 800mA, HER: 780mA, 1576 bunches/beam July 5th) 2.29 x 10³³/cm²/s (βy*3mm, LER: 270mA, HER: 225mA, 394 bunches/beam July 3rd)

Lspec at June 10, 2018

$$L_{sp} = \frac{1}{2\pi\sigma_{xc}\sigma_{yc}e^2f_0}$$

 $\sigma_{yc} = \sqrt{\sigma_{y+}^2 + \sigma_{y-}^2}$ 1mA/bunch=6x10¹⁰/bunch

Optics aberration and tuning at IP

- In early stage of Phase II, luminosity of very low current contradict with the measured emittance.
- Luminosity did not increase for squeezing beta.
- Local coupling R2 at IP could be suspected.

$$\sigma_y^2 \approx \sigma_Y^2 + \sigma_x^2 \left[\frac{R_2^2}{\beta_x^2} + R_1^2 \right] + \left(\eta_y \sigma_\delta \right)^2 \qquad \begin{array}{l} \sigma_Y^2(s) = \beta_Y(s) \varepsilon_Y \\ \sigma_X^2(s) \approx \sigma_X^2(s) = \beta_X(s) \varepsilon_X \end{array}$$

- R2 can be induced by skew rotation of both side of QCS.
- Induced R2 does not change for squeezing of β^* .
- However effect of R2 is enhanced for squeezing β^* .

$$\mathcal{M} = \exp(-:R_2 p_x^* p_y^*:) = \exp(-:R_2 x y:)$$

$$\mathcal{M} = \exp(:R_2 p_x^* p_y^*:) = \exp(:R_2 x y:)$$

$$\beta \beta^* \sim 1m^2$$

$$\Delta \phi = \frac{\pi}{2}$$

$$\Delta \phi = \frac{\pi}{2}$$

Overview of IR magnets

N. Ohuchi et al.

9

• Compensation solenoids [ESL, ESR1, ESR2 and ESR3]

- In the left cryostat, one solenoid (12 small solenoids) is overlaid on QC1LP and QC1LE.
- In the right cryostat, the 1st solenoid (15 small solenoids) is overlaid on QC1RP, QC1RE and QC2RP.
 The 2nd and 3rd solenoids on the each beam line in the QC2RE vessel.

2016/06/14

Super

SuperKEKB Review 2016

- Linear and nonlinear correction coils including skew are wound in QC1-2.
- R2 was corrected by a1 (skew Q) correction coil of QC1.

R scan in operation and beam-beam simulation

Specific Luminosity and Beam-Beam Parameter

Specific luminosity dropped at very low current.

$$L_{sp} = \frac{L}{n_b I_+ I_-} = \frac{1}{4\pi (\sigma_z \phi_x) e^2 f_0 \sigma_y^*} = \frac{1.25 \times 10^{25}}{\sigma_y^*} \ [cm^{-2} s^{-1} / mA^2]$$

 L_{sp} at very low current is consistent with beam size measurement.

$$L_{sp} = 4 \times 10^{31} \rightarrow \sigma_y^* = 300 \text{ nm} (\epsilon_y = 30 \text{ pm})$$

 \leftrightarrow ϵ_y = 23 pm Single beam measurement (LER)

Beam-beam tune shift was saturated at $\Delta v_y(e^-)=0.02$ due to e⁺ beam blow-up.

16

Achieved: $L_{sp}=15x10^{30}$ cm⁻²s⁻¹mA⁻² at 0.4mA², $\Delta v_y=0.02$ at $\beta_y=3$ mm Final goal : $L_{sp}=220x10^{30}$ cm⁻²s⁻¹mA⁻² at 1.5mA², $\Delta v_y=0.08$ at $\beta_y=0.3$ mm

1mA/bunch=6x10¹⁰/bunch

TbT measurement of x-y coupling at IP

• y motion in X mode. $B = \begin{pmatrix} B_X & 0 \\ 0 & B_Y \end{pmatrix}$ $R = \begin{pmatrix} r_0 & 0 & r_4 & r_2 \\ 0 & r_0 & -r_3 & r_1 \\ -r_1 & -r_2 & r_0 & 0 \\ -r_2 & -r_4 & 0 & r_0 \end{pmatrix} \qquad B_X = \begin{pmatrix} \sqrt{\beta_X} & 0 \\ -\alpha_X/\sqrt{\beta_X} & 1/\sqrt{\beta_X} \end{pmatrix}$ $\boldsymbol{x} = RB\boldsymbol{X}$ r1: cos component of y for x betatron motion ,r2: sin component $y = -r_1 x - r_2 p_x = -r_1 a \cos \phi(s) + r_2 \left[\frac{a}{\beta} \sin \phi(s) + \frac{\alpha}{\sqrt{\beta}} a \cos \phi(s) \right]$ $\phi(s) = 2\pi n \nu_r + \phi_r$ $= c \cos(2\pi n v_x + \phi_v)$ $\frac{c}{a}\cos(\phi_y - \phi_x) = \left(-r_1 + r_2\frac{\alpha}{\sqrt{R}}\right) \qquad \qquad \frac{c}{a}\sin(\phi_y - \phi_x) = \frac{r_2}{R}$ r3: cos component of y for px betatron motion ,r4: sin component $p_y = r_3 x - r_4 p_x = r_3 a \cos \phi(s) + r_4 \left[\frac{a}{\beta} \sin \phi(s) + \frac{\alpha}{\sqrt{\beta}} a \cos \phi(s) \right]$ $= d \cos(2\pi n \nu_x + \phi_a)$ $\frac{a}{a}\cos(\phi_q - \phi_x) = \left(r_3 + r_4\frac{\alpha}{\sqrt{\beta}}\right) \qquad \qquad \frac{a}{a}\sin(\phi_q - \phi_x) = -\frac{r_4}{\beta}$

FFT of BPM data

- xL,yL left side and xR, yR right side monitor of IP.
- Small y_{IP}, but enough p_{yIP}=q_{IP}. R1 and R2 is hard to measure compare with R3, R4

Toward Phase III (start Mar. 2019)

 Squeezing beta*, Luminosity increase is not trivial at all without IP optics tuning.

Luminosity is half at $I_+I_-=0.4$ mA². Design 1.5 mA². $\beta_y * 1/10$ Beam-beam simulation considering optics aberrations at IP

- Linear
- Nonlinear
- Chromatic
- Recent operation showed e+ beam is weaker than e- beam. Weak(e+)-strong(e-) simulation is performed.

Weak(e+)-strong(e-) simulation with errors

- Error strengths of R3 and R4 are much larger than measurement. Discard.
- R1 and R2 were already scanned and given optimum.
- We cleared linear aberrations in Phase-II.

Nonlinear aberrations

 $\mathcal{M} = \exp(\pm : c_{10} p_x^{*2} p_y^*:) = \exp(\pm : c_{10} x^2 y:)$

- $p_x^2 p_y$ term was studied before commissiong.
- $p_x^2 p_y$ term well reproduces measured L_{sp} .
- The strength is 100 times larger than the value given by design of QCS. c₁₀=c(p_x²p_y)=0.07m.

Chromatic coupling $\mathcal{M} = \exp(\pm : R'_2 p_x^* p_y^* \delta : \pm : R'_1 x^* p_y^* \delta :) = \exp(\pm : R'_2 xy \delta : \pm : R'_1 p_x y\delta)$

- R3' and R4' were measured to be R3'=300, R4'=20.
- The behaviors for R1' and R2' are plausible.
- R1' and R2' are hard to be measured in the present monitor. R1' ~-10 was measured. Reliable?

Summary

- Phase II commissioning was done by July 2018.
- Collision with $\beta_x^*=0.1m(e^-)$, 0.2m(e⁺), $\beta_y^*=3mm$ was established.
- Luminosity gain squeezing β^* is not trivial, considering various errors.
- L=5x10³³ cm⁻²s⁻¹ was achieved. Beam-beam tune shift is limited to be $\Delta v_y(e^-)=0.02$ due to e⁺ beam blow-up.
- Electron cloud instability seems to be managed well.
- Phase III commissioning starts Mar. 2019.
- $\Delta v_v(e^{+-})=0.04$ is minimum target. Final goal 0.06-0.08.
- We expect nonlinear/chromatic aberration at IP as sources of the luminosity degradation.
- The correction can be done skew sextupoles and QCS nonlinear coils.
- Otherwise our luminosity tuning may become deadlock.

QCS superconducting magnet system

• R2 was corrected by a1 correction coil of QC1.