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Basics (Linear equations) 
• “Original incentive to study the stability of the motion in non-linear dynamic systems has been prompted by 

development of Celestial Mechanics in XIX century to describe the orbital motion of Planets” (W.Scandale. 

“DYNAMIC APERTURE”, CAS CERN-95-06) 

 

• We discuss here single particle Beam Dynamics. Collective effects are out of scope of talk 

 

• Trajectory of charge particles in magnetic fields of storage ring, composed of (𝑵) periodic cells each of 

length 𝑳  and total  ring circumference  𝑪 = 𝑳 ∙ 𝑵, is described by Lorentz equation  

  𝒎𝑹′′ = −
𝒆

𝒄
𝑹′ × 𝑩   

• Restoring forces are periodic  𝑲𝒚 𝒔 + 𝑳 = 𝑲𝒚 𝒔   and particles oscillate around closed (“reference”) orbit 𝑹𝟎  

Here (𝒀) stays for horizontal (𝐗) or vertical (𝒁) components of transverse coordinates. K.Steffen. “Basic Course on 

accelerator Optics”. CAS CERN-85-19. 

 

Oscillations of particles in transverse to beam motion direction - fast with respect to slow synchrotron oscillations of energy  and phase  

--  Transverse and longitudinal planes might be split    

--- Motion in the  transverse phase space might be considered independently on motion in  longitudinal phase space 

A.Wolski.  US PAC School-2013 

Solving Lorentz equation in cylindrical system of                                     

coordinates 𝑹,𝜽, 𝒛   and  

---assuming  PARAXIAL beam conditions : 

--  the deviation of horizontal 𝑿 𝒔 = 𝑹 𝒔 − 𝑹𝟎 𝒔   

     and vertical (𝒁) position of  particle from reference  

     orbit   𝑹𝟎  much less than curvature radius 𝑿 ≪ 𝑹𝟎     

--- angular deviations 𝒀′ 𝒔 = 𝒅𝒀 𝒔 /𝒅𝒔 ≪ 𝟏   

---- one can NEGLECT high order terms and  

--- derive LINEAR equations of harmonic oscillations 
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Z 

𝑝𝑧 



• If periodic restoring forces acting on particle with reference momentum  𝒑𝟎 are perfectly LINEAR, the 

particle oscillations are STABLE and described by second order homogeneous differential equations 

(quasi-harmonic oscillator) with periodic restoring force (HILL equations)  (longitudinal coordinate  𝑠    is 

independent variable) E.Courant and H.Snyder  Theory of of  the alternatiing-gradient synchrotron. Ann.Phy, 3 (1958). 

 

             
𝒅𝟐𝑿 𝒔

𝒅𝒔𝟐
+ 𝒌𝒙 𝒔 𝑿 𝒔 = 𝟎                                

𝒅𝟐𝒁 𝒔

𝒅𝒔𝟐
+ 𝒌𝒛 𝒔 𝒁 𝒔 = 𝟎  

 

• Radial Focusing term 1/𝜌0 in magnets  should be included into consideration     𝑲𝒙 𝒔 =
𝟏

𝝆𝟎
𝟐 𝒔

− 𝒌𝒙 𝒔       

• Flat sector bend is a drift in axial direction                 𝒌𝒛 𝒔 = 𝟎    

• Focusing strength of  quadrupole                                                      𝒌𝒛 𝒔 = −𝒌𝒙 𝒔 =
𝟏

𝑩∙𝝆

𝝏𝑩𝒛

𝝏𝒙
 

• in bending  plane   𝑿𝑫 = 𝑫 ∙ ∆𝒑/𝒑𝟎 = 𝑫𝜹  and equations for off-momentum particles are        

                                        

𝒅𝟐𝑿 𝒔

𝒅𝒔𝟐
+𝑲𝒙 𝒔 𝑿 𝒔 =

𝟏

𝝆𝟎 𝒔

𝜹𝒑

𝒑𝟎
           and                  

𝒅𝟐𝑫 𝒔

𝒅𝒔𝟐
+ 𝑲𝒙 𝒔 𝑫 𝒔 =

𝟏

𝝆𝟎 𝒔
    

 

• Solution of linear differential equations is LINEAR combination of initial coordinates and momentums  and 

might be written in matrix form    J.Livingood. Principles of Cyclic Acceleratrs. (1961).   K.Steffen. High energy Beam Optics (1965). 

 

𝒀 𝒔 = 𝑴 𝒔/𝒔𝟎 ∙ 𝒀 𝒔𝟎  

 

where 𝒀 𝒔𝟎  is vector of initial coordinates and momentums in 6D phase space 

 

𝒀 𝒔𝟎 = 𝒙𝟎, 𝒑𝒙𝟎 , 𝒛𝟎, 𝒑𝒛𝟎 , 𝝋𝟎, 𝜹  

 

 



• Linear Transfer matrixes   𝑴    follow multiplication rule            𝑴 𝒔𝟐/𝒔𝟎 = 𝑴 𝒔𝟐/𝒔𝟏 ∙ 𝑴 𝒔𝟏/𝒔𝟎  

 

• Transfer matrix for full revolution must repeat itself in order  for motion to be stable      

          

𝑴 𝒔+ 𝑳 = 𝑴 𝒔+𝑵 ∙ 𝑳 = 𝑴 𝒔  

 

• Necessary and sufficient condition of STABLE  motion – transfer matrix 𝑴 𝒏∙𝑵 is BOUNDED at  any   𝒏 → ∞ 

• Solutions of  linear equations of motion are Real part of periodic quasi-harmonic function of orbit trajectory (s) 

 

                          𝒀 𝒔 = 𝑹𝒆 𝝐𝜷𝒚 𝒔 ∙ 𝒆𝒙𝒑 𝒊𝒚 = 𝝐𝜷𝒚 𝒔 ∙ 𝒄𝒐𝒔 𝝁𝒚 𝒔  

 

             𝒑𝒚 𝒔 = −
𝝐

𝜷𝒚 𝒔
∙ 𝒔𝒊𝒏 𝝁𝒚 𝒔 −

𝜷𝒚
′ 𝒔  

𝟐
𝒄𝒐𝒔 𝝁𝒚 𝒔  

A.Kolomensky and A.Lebedev. Theory of Cyclic Acceleratros (1966) 

• Betatron  function has periodicity of lattice Cell     𝜷𝒚 𝒔 + 𝑳 = 𝜷𝒚 𝒔        No LIMIT on the amplitude    𝒀𝟎 𝒔 = 𝝐𝜷𝒚 𝒔  

•  For the linear lattice the dynamic aperture is infinite 

• Phase advance  𝝁   and Trace of  transfer matrix  𝑴   related as        𝒄𝒐𝒔 𝝁 =
𝟏

𝟐
𝑻𝒓 𝑴 =

𝟏

𝟐
𝒎𝟏𝟏 +𝒎𝟐𝟐  

 

•  Betatron oscillations are BOUNDED  if  phase advance  𝝁   has REAL values, that is   𝒄𝒐𝒔 𝝁 < 𝟏                                         

Thus, main condition of STABLE motion  in linear approximation is    (G.Guignard. Particle Accelerators, 1986, V.18) 

  𝑻𝒓 𝑴 ≤ 𝟐                   
Integrable motion of particles in accelerators and rings should be stable. Deviations in all 3D planes with respect  to central trajectory are finite 

and limited. Particles oscillate around reference orbit. Asymptotic unbounded growth of particle coordinates represents unstable behavior 

 

 

 

 

 

 

 

 

 

 

 

 



• Betatron tunes are defined as number of betatron oscillations per turn (𝝁 𝒔  is phase advance per Cell  -- 

element of periodicity)  

𝑸𝒚 =
𝝎𝒚

𝝎𝒓𝒐𝒕
=
𝑵 ∙ 𝝁𝒚 𝒔

𝟐𝝅
=

𝟏

𝟐𝝅
 

𝒅𝒔

𝜷𝒚 𝒔
 

 

• Transfer Matrix should satisfy SYMPLECTIC conditions                                        𝑴𝑻 ∙ 𝑺 ∙ 𝑴 = 𝑺 
             J.Rees. “Symplecticity in Beam Dynamics: An Introduction”. SLAC-PUB-9939 (2003). 

• Symplectic matrix 𝑺   is composed of  UNIT matrixes       𝑰 =
𝟏 𝟎
𝟎 𝟏

 

𝑱 ≡ 𝑺 =
𝟎 𝑰
−𝑰 𝟎

                    and in 1D phase space                        𝑺 =
𝟎 𝟏
−𝟏 𝟎

 

 

• SYMPLECTIC  conditions are realized  “if” and “when”        𝒅𝒆𝒕 𝑴 = 𝒎𝟏𝟏𝒎𝟐𝟐 −𝒎𝟏𝟐𝒎𝟐𝟏 = 1 
 

• Equations of harmonic oscillations might be derived also from the unperturbed   Hamiltonian function 𝑯𝟎   

where second order terms (𝒙 ∙ 𝜹) and 𝜹𝟐   etc. are omitted  

 

𝑯𝟎 =
𝒑𝒙
𝟐  + 𝒑𝒛

𝟐

𝟐
+
𝑲 𝒔

𝟐
𝒙𝟐 − 𝒛𝟐  

 

• Hamiltonian of system as function of canonical variables   (𝒒 𝒌 =
𝝏𝑯

𝝏𝒑𝒌
,  𝒑 𝒌 = −

𝝏𝑯

𝝏𝒒𝒌
)   is   Integral of motion 

𝑯 𝒒, 𝒑, 𝒕 =
𝝏𝑯

𝝏𝒕
+  

𝝏𝑯

𝝏𝒒𝒌
𝒒 +

𝝏𝑯

𝝏𝒑𝒌
𝒑 = 𝒄𝒐𝒏𝒔𝒕 𝒕    

𝒌                                            (B.Montague. CAS-95-06)    

• providing there is no EXPLICIT dependence of Hamiltonian  on time 𝒕
𝝏𝑯

𝝏𝒕
= 𝟎        𝒔 = 𝝎𝒕  

𝝏𝑯

𝝏𝒔
= 𝟎  

• (energy conservation law) 

 

 

 



• Lie Operator  denoted by symbol   ∶ 𝒇:    acts on function 𝒈   as Poisson brackets in 2n Phase Space       

𝒒𝟏 , 𝒒𝟐, … 𝒒𝒏 , 𝒑𝟏 , 𝒑𝟐, …𝒑𝒏   (A.Dragt. „An Overview of Lie Methods for Accelratro Physics“. Proc. PAC-2012. USA) 

 

: 𝒇: 𝒈 = 𝒇, 𝒈 = 
𝝏𝒇

𝝏𝒒𝒊

𝝏𝒈

𝝏𝒑𝒊
−

𝝏𝒇

𝝏𝒑𝒊

𝝏𝒈

𝝏𝒒𝒊

𝒏

𝒊=𝟏

 

• „Solving of Hamiltonian equations of motion and finding symplectic maps are equivalent tasks“ 

• Transfer map for an element of length 𝑳  in symplectic Lie operator form is  

 

𝑴𝒔𝟎→𝒔𝟏 = 𝒆𝒙𝒑: :− 𝑯 𝒔 𝒅𝒔
𝒔𝟏

𝒔𝟎

 = 𝒆𝒙𝒑 :−𝑳𝑯:  

 

• Lie generators applied to describe non-linear kicks                         𝒆𝒙𝒑:𝒇:=1+: 𝒇: +
𝟏

𝟐!
: 𝒇: 𝟐 +⋯ =  

:𝒇: 𝒌

𝒌!

∞
𝒌=𝟎  

 

• Canonical transformations simplify problems by choice of proper coordinate system from original  

        𝒒𝒌 , 𝒑𝒌 , 𝒕   variables to new canonical variables  𝑸𝒌 , 𝑷𝒌 , 𝒕 .   (E.Wilson,  CAS  CERN 95-06) 

 

𝑯′ 𝑸𝒌, 𝑷𝒌, 𝒕 = 𝑯 𝒒𝒌, 𝒑𝒌, 𝒕 +
𝝏𝑭

𝝏𝒕
 

 

• New Hamiltonian preserves form of Hamiltonian equations                  𝑸 𝒌 =
𝝏𝑯′

𝝏𝑷𝒌
            𝑷 𝒌 = −

𝝏𝑯′

𝝏𝑸𝒌
     

• Different types of  GENERATING functions 𝑭   are applied in order to eliminating EXPLICIT dependence of 

Hamiltonian on time 
𝝏𝑯′

𝝏𝒕
= 𝟎  and build new Integral of motion  

𝒅𝑭 = 𝒑𝒌 𝒅𝒒𝒌 − 𝑷𝒌𝒅𝑸𝒌

𝒌

+ 𝑯−𝑯′ 𝒅𝒕 

 
 



NON-LINEAR BEAM DYNAMICS  (NBD) 

 

• “Introduction of non-linear elements into ring lattice will cause oscillations about the closed (reference) orbit to 

grow in amplitude for particular tunes” (A.Wolski.  “Beam Dynamics in High Energy Particle Accelerators”. 2014.  

• High order terms of magnetic fields cause perturbations of linear lattice and leads to restriction on beam 

stability: 1Resonances,  2Momentum dependence of betatron tunes,    3Amplitude dependent tune shifts 

 

• Canonical  perturbation  theory  to deal with non-linear BD AWAY of resonances   𝒎𝑸𝒙 + 𝒏𝑸𝒛 ≠ 𝒌  

(L.Nadolski, Non-Linear Beam Dynamics. NPA-2011-2012. (V2.2).       

• Mechanism to change betatron tunes with momentum offset (linear, quadratic and cubic chromaticity) 

• Mechanism to SHIFT betatron tunes with Amplitude of oscillations (ADTS) –linear approximation 

• Resonance conditions, resonance width, stopbands 

 

2D Hamiltonian includes linear part 𝑯𝟎  + Perturbation terms  (In Light Soures kinematic term 
𝑥

𝜌
≪ 1    is ignored) 

A. Verdier. CAS-CERN 95-06.    W.Herr. CAS 2013 (CERN-2014-009).   P.Streun, CAS-2003 (CERN-2006-002).  Y.Cai. NIM-A 645 (2011).  

 

𝑯 = 𝟏 +
𝒙

𝝆

𝒑𝒙
𝟐  + 𝒑𝒛

𝟐

𝟐 𝟏 + 𝜹

𝒌𝒊𝒏𝒆𝒎𝒂𝒕𝒊𝒄

−
𝒙

𝝆
𝜹 +

𝒙𝟐

𝟐𝝆𝟐

 𝒃𝒆𝒏𝒅

+ 
𝒌𝟏
𝟐

𝒙𝟐 − 𝒛𝟐 

𝒒𝒖𝒂𝒅

  +
𝒌𝟐
𝟑

𝒙𝟑 − 𝟑𝒙𝒛𝟐 

𝒔𝒆𝒙𝒕𝒖𝒑𝒐𝒍𝒆

+
𝒌𝟑
𝟒

𝒙𝟒 − 𝟔𝒙𝟐𝒚𝟐 + 𝒚𝟒

𝒐𝒄𝒕𝒖𝒑𝒐𝒍𝒆

 

 

Quads strength - 𝑲𝑸 ≡ 𝒌𝟏 =
𝟏

𝑩∙𝝆

𝝏𝑩𝒛

𝝏𝒙
 Sextupole -- 𝑲𝑺 ≡ 𝒌𝟐 =

𝟏

𝑩∙𝝆

𝝏𝟐𝑩𝒛

𝝏𝒙𝟐
   Octupole -- 𝑲𝑶𝑪𝑻 ≡ 𝒌𝟑 =

𝟏

𝑩∙𝝆

𝝏𝟑𝑩𝒛

𝝏𝒙𝟑
 

 

• After canonical transformations  Hamiltonian of a ring might be represented in Action-Angle variable by  com-

bination of  linear part and  NON-linear contributions (kicks) of quads 𝑯𝟐  , sextupoles 𝑯𝟑  G.Guignard. Part.Acc. 

V.18 (1986),    J.Bengtsson.SLS Note 9/97.  

𝑯 𝒙, 𝑱𝒙,𝒛 , 𝑱𝒛, 𝒔 ∝ 𝑸𝒙𝑱𝒙 + 𝑸𝒛𝑱𝒛 + 𝑯𝟐 𝒔 + 𝑯𝟑 𝒔  

 



Phase space plot in Action-angle coordinates (J, ) with 

non-linear (Sextupole)  term. 

   

Amplitude of Stable Motion is  limited and Phase Space 

is distorted at large  Amplitudes 

Phase space ellipse.  

Linear motion 

Figure taken from   E.Wilson. „Non-

linear Resonances“. CAS CERN 95-06. 

Figure taken from   A.Wolski. US PAC School/2013.  

Figure taken from   E.Wilson. „Non-linear 

Resonances“. CAS CERN 95-06. 

Linear motion: 

after canonical 

transformations. 

Phase space is 

circle in action-

angle variables 

 

𝟐𝑱𝒙 = 𝜺𝒙 = 𝜸𝒙𝟐 + 𝟐𝜶𝒙𝒙′ + 𝜷𝒙′𝟐 

Acceptance is limited by „Separatrix“ connecting UFP and 

dividing  stable area around  reference orbit and area of 

unstalble motion (hyperbolic curves with assymptotic  

behavior) 

 

𝑯𝑺𝑿𝑻~
𝑱𝟑/𝟐𝜷𝟑/𝟐 𝒔

𝟑!
𝑲𝑺𝒄𝒐𝒔

𝟑 → 𝑲𝑺𝒄𝒐𝒔𝟑 

𝑱𝒎𝒂𝒙 =
1

2
𝑨𝒚 

Courant-Snyder Invariant 

𝑫𝑨𝒙 = 𝜷𝒙𝟐𝑱𝒎𝒂𝒙  = 𝜷𝒙𝑨𝒙 

 𝑫𝑨𝒙 is cross-section of ring acceptances 𝑨𝒙,𝒛 at position 𝒔   



Phase space plot in Action-angle coordinates (J, ) with 

non-linear (Octupole)  terms. 

  Amplitude of Stable Motion is  limited and Phase 

Space is distorted at large  Amplitudes 

* L.Evans.. „The effect of an Octupole near a fourth-order resonance „     

CAS CERN 84-15. p.319. 

Figure taken from   E.Wilson. „Non-linear Resonances“. CAS CERN 95-06. 

Approximation of first order term of Tailor 

expansion is valid for SMALL Amplitudes… 

 

Period of Pendulum oscillations 

depends  on angle (Amplitude of 

oscillations).  

Acceptance is limited by „Separatrix“ dividing  stable area  

around  remote (external) Fixed points from central area  

of stable motion  around  reference orbit 

 

𝑯𝑶𝑪𝑻~
𝟐𝑱𝜷𝒚 𝒔

𝟒/𝟐

𝟒!
𝑲𝑶𝑪𝑻𝒄𝒐𝒔

𝟒 → 𝑲𝑶𝑪𝑻𝒄𝒐𝒔𝟒 

„Islands of stability“ are presented at very large  

Amplitudes, while we consider  Ring Acceptance  

as an Area of closed curves around reference orbit. 

  



Slide taken from presentation  

of D.Newton at KIT.2017. 

Exciting of  

Third-Integer  

Resonance 

𝑸𝒙 = 𝑵/𝟑 

is applied for  

Slow extraction 

of particles 

at Proton 

Synchrotrons 



Slide taken from presentation  

of D.Newton at KIT.2017. 



• Dynamic aperture for ON-momentum particles  is a cross-section of Phase space Acceptance at  𝒔  

• 𝑨𝒚   is a ring Acceptance = maximum area of stable oscillations limited by Separatrix          

 𝑫𝑨𝒙 𝒔 = 𝟐𝑱𝒎𝒂𝒙 𝜷𝒙 𝒔 = 𝑨𝒙 𝜷𝒙(𝒔) 

  

Analytical expressions  
J.Gao. Analytical Estimation of the Dynamic Aperture of Circular Acceleratros. LAL/RT  00-02 (2000). 

• Single Sextupole of strength 𝑲𝑺  located at position 𝐬𝟏  limits horizontal Dynamic Aperture at position 𝒔    

      

𝑫𝑨𝒙
𝒔𝒙𝒕 𝒔 = 𝟐𝑱𝒎𝒂𝒙 𝜷𝒙 𝒔 =

𝟐𝜷𝒙 𝒔

𝟑 𝜷𝒙 𝒔𝟏
𝟑/𝟐

𝟏

𝑲𝑺 𝑳𝑺
 

 

• Single Octupole of strength 𝑲𝑶𝑪𝑻  located at position 𝒔𝟐  limits horizontal DA at position 𝒔  

 

𝑫𝑨𝒙
𝑜𝑐𝑡 𝒔 = 𝟐𝑱𝒎𝒂𝒙 𝜷𝒙 𝒔 =

𝜷𝒙 𝒔

 𝜷𝒙 𝒔𝟐

𝟏

𝑲𝑶𝑪𝑻 𝑳𝑶𝑪𝑻
 

• Estimation of vertical DA  (Courant Snyder Invariant) 

 

𝑫𝑨𝒚
𝒔𝒙𝒕 𝒔 =

𝜷𝒙 𝒔𝟏
𝜷𝒚 𝒔𝟏

𝑫𝑨𝒙
𝟐 − 𝒙𝟐  

 
• 𝑲𝑺 𝑳𝑺  and  𝑲𝑶𝑪𝑻 𝑳𝑶𝑪𝑻 - integrated strengths of Sextupole and Octupole. Higher strength– less DA 

• High value of beta-function at position 𝒔  (Septum)  preferable for injection  

• High Dispersion 𝑫𝒙   at SXT location allows to reduced SXT strength ---  DA is improved  

• Small 𝜷𝒚 at location of SXT  (OCT)  might improve DA but Higher strength of non-linear element will be required  

 

 

 

 



 

 

 

 

• Dynamic Aperture in horizontal plane of a single (2m) multipole (m>3) 
J.Gao. Analytical Estimation of the Dynamic Aperture of Circular Acceleratros. LAL/RT  00-02 (2000). 

 

𝑫𝑨𝒙
𝟐𝒎 𝒔 = 𝟐𝜷𝒙 𝒔

𝟏

𝒎𝜷𝒙
𝒎 𝒔𝟐𝒎

𝟏
𝟐 𝒎−𝟐 𝟏

𝑲𝒎−𝟏 𝑳

𝟏
𝒎−𝟐

 

 

• If non-linear elements  are independent  -- no special phase and amplitude relations between  SXT (OCT)  

 

𝟏

𝑫𝑨𝒕𝒐𝒕𝒂𝒍
=  

𝟏

𝑫𝑨𝑺𝑿𝑻
+ 

𝑵𝑺𝑿𝑻

𝒊

 
𝟏

𝑫𝑨𝑶𝑪𝑻

𝑴𝑶𝑪𝑻

𝒊

+⋯ 

 

Scaling  
R.Bartolini. „Review of lattice design for low emittance rings“. BD Newsletter, No.57, 2012. 

E.Levichev, A.Bogomyagkov, P.Piminov. Proc.IPAC-2014, Dresden. Private Comm. 

• In approximation of small phase advance between two sextupoles  one can estimate reduction of horizontal 

Dynamic Aperture for ultra-low emittance Synchrotron Light Sources according to scaling Law  

 

𝑫𝑨𝑿 𝒔  ~ 
𝜺𝒙
𝒏𝒂𝒕

𝒙
𝒄𝒆𝒍𝒍

 ~ 
𝑫𝑿
𝒎𝒂𝒙

𝒙
𝒄𝒆𝒍𝒍

 ~ 
𝟏

𝑲𝑺 ∙ 𝑳𝑺
 

 

• and for vertical Dynamic Aperture  

𝑫𝑨𝒁 𝒔  ~ 
𝑫𝑨𝑿 𝒔

𝒛
𝒄𝒆𝒍𝒍

𝜷𝒙 𝒔

𝜷𝒛 𝒔
 

 

• 𝜺𝒙
𝒏𝒂𝒕 -- natural emittance after SR damping     𝒙

𝒄𝒆𝒍𝒍 -- natural chromaticity per cell       𝑫𝑿
𝒎𝒂𝒙-- Dispersion (max) 

  

High natural CHR + reduced   Dispersion  -- main factors limiting DA of ultra-low emittance Light Sources 
Small Dispersion -- to keep ultra-low emittance,      High chromaticity – due to strong Quads and SXT 

  



RESONANCE DRIVING TERMS 

 

• The concept of RESONANCE DRIVING TERMS is applied when nonlinear 

components are dependent  -- special phase and amplitude relations are introduced 

for cancellation… G.Guignard Part.Acc.1986,v.18, pp.129-165.  (J.Bengtsson. 1 SLS Note 9/97. 2 Beam 

Dynamics Newsletter, No.57.2012. 3 Nucl.Inst.Meth. A404 (1998) 237-247.) 

 

• Symplectic form of a lattice Hamiltonian integral is contributed by individual  

Hamiltonians of each Quadrupole 𝑯𝟐𝒎, Sextupole 𝑯𝟑𝒏 and might be approximated by 

a Sum of different  modes –  RDT 

 

 𝑯𝟐 𝒔 + 𝑯𝟑 𝒔 𝒅𝒔 = 𝒉𝟑 ∝ 𝒉𝒋𝒌𝒍𝒎𝒑 

• Hamiltonian coefficients  𝒉𝒋𝒌𝒍𝒎 contain the contribution from all the multipoles of order 

𝒏 = 𝒋 + 𝒌 + 𝒍 +𝒎 . Even sum 𝒋 + 𝒌  corresponds to normal multipoles 𝑩𝒏  while 

odd sum 𝒍 + 𝒎  - to skew multipoles 𝑨𝒏  

 

• Driving terms  are derivatives of Lie operator over action variable   

   𝒉𝒋𝒌𝒍𝒎𝒑 =
𝝏𝒉𝟑

𝝏𝑱𝒙,𝒚
 

• “LINEAR” (first order) Hamiltonian modes and their complex conjugates (*) are 

proportional to the first order of integrated sextupole strength 𝑲𝑺𝑳  

 

 



• First order  RDT and their complex conjugative (*) is a SUM of integrated strengths of 𝑵𝑺𝑿𝑻 sextupoles and  

𝑴𝑸𝑼𝑨𝑫 quadrupoles with scaling factors  (“lever of arm”) over different frequencies multiple to betatron phase 

advance 𝝁𝒙𝒏, 𝝁𝒛𝒏 at element location 

 

ℎ𝑗𝑘𝑙𝑚𝑝 = −ℎ𝑗𝑘𝑙𝑚𝑝
∗ = −  𝐾𝑆 ∙ 𝐿𝑆 𝑛

𝑁𝑆𝑋𝑇

𝑛

𝛽𝑥𝑛

𝑗+𝑘
2 ∙ 𝛽𝑦𝑛

𝑙+𝑚
2 ∙ 𝐷𝑛

𝑝
∙ 𝑒𝑖 𝑗−𝑘 𝜇𝑥𝑛+𝑖 𝑙−𝑚 𝜇𝑦𝑛  

+ = −  𝐾𝑄 ∙ 𝐿𝑄 𝑛

𝑀𝑄𝑈𝐴𝐷

𝑛

𝛽𝑥𝑛

𝑗+𝑘
2 ∙ 𝛽𝑦𝑛

𝑙+𝑚
2 ∙ 𝑒𝑖 𝑗−𝑘 𝜇𝑥𝑛+𝑖 𝑙−𝑚 𝜇𝑦𝑛 

𝑝≠0

 

 
• Quadrupoles at dispersive sections 𝑫 ≠ 𝟎  – contribute to chromatic Hamiltonian driving modes 𝒑 ≠ 𝟎  

• Quads in achromatic sections 𝑫 = 𝑫′ = 𝟎   do NOT contribute to RDT (in theory) 
 

• Sextupoles contribute to both chromatic RDT 𝒑 ≠ 𝟎  in dispersive sections 𝐷 ≠ 0    

• AND geometric  RDT 𝒑 = 𝟎  in achromatic sections 𝑫 = 𝑫′ = 𝟎  

 

• Chromatic sextupoles compensate natural negative chromaticity and its strengths are fixed  

 

• Additional harmonic sextupoles in achromatic sections compensate shrinking of area of stable oscillations 

(reduction of  Dynamic Aperture) caused by main chromatic sextupoles 

 

• Driving modes ideally should be SUPPRESSED either CANCELLED because they are the source of ALL the 

resonances considering long term behavior by multiple repetition of the lattice structure 

 

𝒉𝒋𝒌𝒍𝒎𝒑
∞ =

𝒉𝒋𝒌𝒍𝒎𝒑

𝟐𝒔𝒊𝒏 𝝅 𝒋 − 𝒌 𝑸𝒙
𝒄𝒆𝒍𝒍 + 𝒍 −𝒎 𝑸𝒚

𝒄𝒆𝒍𝒍 
 

 

 
 



• Table 1. LINEAR Resonance Driving Terms (RDT) and their effects 

 

N Linear  

Driving terms 

Effect Comments Phase 

dependence 
 

1 
11001h     )_( linCrX   /xQ   Linear Chromaticity (hor)     

 1

x  
 chromatic 

2 
00111h    )_( linCrY   /yQ   Linear Chromaticity (vert)    

 1

y   chromatic 

3 *

0200120001 hh   sx QQ 2   parametric half-integer resonance 

synchro-betatron coupling 
xi

e
2

  chromatic 

4 *

0002100201 hh   sy QQ 2   parametric half-integer resonance 

synchro-betatron coupling 
yi

e
2

  
chromatic 

5 *

0100210002 hh    /D   

 

Second order dispersion 
   /1 DD  

xi
e


  chromatic 

6 *

1200021000 hh   xQ    xi
e


 geometric 

7 *

0111010110 hh   xQ   xi
e


  geometric 

8 *

0300030000 hh   xQ3    xi
e

3
 geometric 

9 *

0102010200 hh   yxy QQ 2    yxi
e

 2
 

geometric 

10 *

0120010020 hh   yxy QQ 2     yxi
e

 2
 

geometric 

 

𝒉𝟏𝟏𝟎𝟎𝟏 = 𝒚
𝟏
= −

𝟏

𝟒𝝅
 𝑲𝑸𝑳𝑸 𝒏

𝜷𝒚𝒏

𝑵𝑸𝑼𝑨𝑫

𝒏

+
𝟏

𝟒𝝅
 𝑲𝑺𝑳𝑺 𝒎𝜷𝒚𝒎𝑫𝒎

𝑴𝑺𝑿𝑻

𝒎

 
Linear  chromaticity 

is INDEPENDENT 

on phase advance  



𝒉 𝟐 ∝ 𝑲𝑺𝑿𝑻 ∙ 𝑳𝑺𝑿𝑻
𝟐 

 

• Second order RDT drives synchrotron sidebands of LINEAR Resonance modes. When Linear RDT are 

vanished either reduced the second order terms i.e. corresponding sidebands are week and ignored 

• It is mandatory to suppress (minimize)  first order terms in order to reduce second order resonance modes 

 

Amplitude Dependent betatron Tune Shifts (ADTS) 

 

•  Cross-talks of first order RDT in sextupoles as well as between  different sextupoles produce phase 

independent second order RDT and cause ADTS. In linear approximations ADTS are  

 

                   𝜹𝑸𝑿
𝑨𝑫𝑻𝑺=

𝝏𝒉 𝟐

𝝏𝑱𝑿
≈ 𝜶𝒙𝒙𝑱𝑿 + 𝜶𝒚𝒙𝑱𝒀                                               𝜹𝑸𝒀

𝑨𝑫𝑻𝑺=
𝝏𝒉 𝟐

𝝏𝑱𝒀
≈ 𝜶𝒙𝒚𝑱𝑿 + 𝜶𝒚𝒚𝑱𝒀 

 

• ADTS  originated from an amplitude or momentum dependent shift of the closed orbit in the sextupole. 

Orbits must be corrected to the magnetic axis of a sextupole in order to minimize ADTS. Beam Position 

Monitors must be located as close as possible to each sextupole in order to control beam centroid 

 

• Octupols  applied  to COMPENSATE  ADTS  caused by Sextupoles 

 

𝜶𝒚𝒚 = +
𝟏

𝟏𝟔𝝅
 𝑲𝒐𝒄𝒕 ∙ 𝑳𝒐𝒄𝒕

𝑵𝒐𝒄𝒕

𝒏

∙ 𝜷𝒚𝒏
𝟐                               𝜶𝒙𝒛 = −

𝟏

𝟖𝝅
 𝑲𝒐𝒄𝒕 ∙ 𝑳𝒐𝒄𝒕

𝑵𝒐𝒄𝒕

𝒏

∙ 𝜷𝒙𝒏 ∙ 𝜷𝒛𝒏  

 

 

 

SECOND ORDER RESONANCE DRIVING TERMS 

                                      () 



• One might consider RDT as a sum of complex vectors  

• Each complex vector represents local Hamiltonian of sextupole either quadrupole  

• Phase of each vector is multiple of betatron phase advance at element location 

 

• Ten first order Hamiltonian terms are linear in sextupole strength  

• Two real RDT drive horizontal and vertical Chromaticies (j=k)  and (l=m) 

 

• 𝒉𝟏𝟏𝟎𝟎𝟏 = 𝒚
𝟏
= −

𝟏

𝟒𝝅
 𝑲𝑸𝑳𝑸 𝒏

𝜷𝒚𝒏
𝑵𝑸𝑼𝑨𝑫
𝒏 +

𝟏

𝟒𝝅
 𝑲𝑺𝑳𝑺 𝒎𝜷𝒚𝒎𝑫𝒎
𝑴𝑺𝑿𝑻
𝒎  

 

• Only SXT at dispersive sections 𝑫 ≠ 𝟎  control linear chromaticity (1)  and their settings are fixed 

• Hamiltonian RDT of chromatic SXT accumulated ADDITIVELY regardless of phase ( ).   

• Amplitudes of chromatic SXT added / subtracted depending on sign of element strength and sign of (D)   

• Harmonic SXT and quadrupoles located at achromatic sections 𝑫 = 𝑫′ = 𝟎   do not contribute to (1)  

• Strengths and positions of HARMONIC SXT  adjusted to compensate geometric aberrations from CHR SXT 

 

• Eight first order modes and their complex conjugative are phase dependent -- resonance behavior 

 

• 9 families of SXT could be enough to eliminate all excitation modes but at phase advance of cell close to  

𝝁𝒙 = 𝟏𝟖𝟎° Hamiltonian RDT proportional to  (𝟐𝝁𝒙) will be amplified coherently by all SXT 

•   

• Linear system of 9 equations degenerates down to rank 8 and no solution to suppress ALL RDT  

 

• Lattice optics --adjusted to cancel / minimize RDT  by proper phase advance between sections of the lattice 

 

 

 

 

 

Figure taken from  

A. Streun. CAS CERN-2006. 



• applying mirror symmetry conditions and phase advance between CELLS close to quarter of integer 

𝝁𝒚 ≈ 𝒌 ± 𝟎. 𝟐𝟓 ∙ 𝟐𝝅 

• resonances associated with 𝟐𝝁𝒚  phase dependent RDT could be cancelled between cells (𝟐𝝁𝒚 = 𝝅), 

resonances 𝝁𝒚 , 𝟑𝝁𝒚   and coupling resonances   𝝁𝒙 ± 𝟐𝝁𝒛  – between TWO pairs of cells  

 

• Periodicity  ∆𝑸𝒙,𝒛 = 𝑵 ∙ 𝝁𝒙,𝒛
𝒄𝒆𝒍𝒍 𝟐∆𝑸𝒙,𝒛 𝟑∆𝑸𝒙 → 𝒊𝒏𝒕𝒆𝒈𝒆𝒓 (N=5) 

• Figure taken from  A. Streun. CAS CERN-2006. 

 

• To compensate linear CHR and cancel some RDT  " − 𝑰„   condition is applied.  Non-interleaved pairs of 

sextupoles are located at mirror symmetry points of lattice sections with phase advance multiple to 

 𝝁𝒚 = 𝟐𝒏 ± 𝟏 𝝅 

• Twiss              𝜶𝑺𝟏 = −𝜶𝑺𝟐           𝜷𝑺𝟏= 𝜷𝑺𝟐      

• parameters    𝑫 𝒔𝟏 = 𝑫 𝒔𝟐            𝑫′ 𝒔𝟏 = −𝑫′ 𝒔𝟐  

 

• In this case RDT of sextupoles proportional to 𝟐𝝁𝒚 will amplify  itself (rank of matrix is reduced – degradation problem) 

• To minimize RDT proportional to ODD tunes, one need to provide phase advance between lattice sections 

close to 𝝁𝒚 = 𝟐𝒏± 𝟏 𝝅. Complex Hamiltonian modes with phase proportional to 𝟐𝝁𝒚 will be added to each 

other and amplified instead of to be cancelled. 

• Location of SXT in a sequence of EQUAL phase advance steps ∆𝝁𝒙 , ∆𝝁𝒛  might help to limit RDT 

 

• General symmetry conditions full cancellation of non-linear terms of two sextupoles (thin lens approx.) 

∆𝝁𝟐−𝟏= 𝒏𝝅                                                            𝜷𝒁𝟏/𝜷𝑿𝟏  = 𝜷𝒁𝟐/𝜷𝑿𝟐  

  

𝑺𝑿𝟏 𝜷𝑿𝟏
𝟑/𝟐

= − −𝟏 𝒏 𝑺𝑿𝟐 𝜷𝑿𝟐
𝟑/𝟐

                                     𝑫𝟏= − −𝟏 𝒏𝑫𝟐 
 

• G.Xu. „General Conditions for self-cancellation of geometric aberrations in a lattice”.  Phys. Rev. A 8, 104002 (2005) 



A.Bogomyagkov, E.Levichev, P.Piminov. Proc. IPAC-2014. 

𝑫𝑨𝑩𝑰𝑵𝑷 > ±𝟐𝟎 𝒎𝒎 

Difraction Limited Light Source (E.Levichev. BINP Proposals. 2013) 

E.Levichev. „Difraction Limited electron storage ring with large DA“. BINP Proposals. 2013. 

„-I“ Sx „-I“ Sy 
Non-interleaved  

SXT pairs 

DA of BINP DLLS ring (proposals) 
𝑲𝑺𝒙𝑳 = +𝟑𝟗 𝒎−𝟐 

𝑲𝑺𝒛𝑳 = −𝟗𝟒 𝒎−𝟐 

𝑲𝑺𝒙
𝒄𝒐𝒎𝒑

𝑳 = −𝟐. 𝟕 𝒎−𝟐 

𝑲𝑺𝒛
𝒄𝒐𝒎𝒑

𝑳 = +𝟖. 𝟒 𝒎−𝟐 

𝑴𝑨𝑩𝑰𝑵𝑷 = ±𝟏. 𝟓% 

On-momentum On-momentum 

𝑺𝒙 𝑺𝒙 

𝑺𝒙
𝒄𝒐𝒎𝒑

 𝑺𝒙
𝒄𝒐𝒎𝒑

 

𝒐𝒏𝒍𝒚 𝑲𝑺𝒚 

𝑲𝑺𝒚 +𝑲𝑺𝒚
𝒄𝒐𝒎𝒑

 



Original table -- R.Bartolini. “Ultimate storage rings”. CLIC Workshop 2013. CERN. 

Table taken from  E.Levichev. „Difraction Limited electron storage ring with  

large DA“. BINP Proposals. 2013. 

Comparisoin of DLLS Projects 

It is commonly recognized that Required DA for Light Sources  to ensure  beam injection  

 
𝑫𝑨𝑿 ≥ ±𝟏𝟎 𝒎𝒎 

 

 Momentum Acceptance  should  be      𝑴𝑨 =
𝜹𝑷

𝑷𝟎
± 𝟐𝟒 % 

 

to provide reasonable Life time                 𝑻𝟏/𝟐 ≥ 𝟏𝟎 𝒉𝒐𝒖𝒓𝒔 

 

 



Lattice of cSTART ring.  Relaxed parameters  
”3Q_SPLIT_SHORT_5” lattice version  fitted to the FLUTE Bunker 15  14 m 

Circumference [m] 44.112   (41) 

Horizontal Tune    5.8438    (11.31) 

Vertical   Tune       8.4605   (2.61) 

 

Nat. hor. Chromaticity 16   (27) 

Nat. vert.Chromaticity 21   (19) 

Chr / Cell 4 / 5.2   (6.8 / (4.8) 

 

MAX-IV Chroma  (h/v) 50 / 44 

MAX-IV CHR / Cell     2.5 / 2.2  

NSLS-II CHR / Cell  < 3 

ESRF-100 pm / Cell  3.6 / 2.7  

 

Mom compact. 6.034E-03 (3.6E-03) 

Hor.damp.partition Jx   1.397  (0.97) 

 

Energy       50 MeV 

Rad.energy/turn [MeV] 0.00 

Natural Emittance  [nm]  0.18  (0.1) 

Appr.vert. Emittance  [pm] 0.31 

Natural energy spread  4.24E-05 

Hor.  damping time  [s]  24     (20) 

Vert. damping time [s]   34     (19) 

Long. damping time [s]  21      (9)  

 

Radiation Integrals: 

 I1  [m]       2.662E-01 

 I2  [1/m]    4.935E+00 

 I3  [1/m2]  3.876E+00 

 I4  [1/m]   -1.96E+00 

 I5  [1/m]    3.389E-01 

Parameters of „21_3,6,9“ lattice 

are shown in brackets  

-6 -4 -2 0 2 4 6

X[m]

-12

-10

-8

-6

-4

-2

0

Y
[
m
]

-6 -4 -2 0 2 4 6

X[m]

-12

-10

-8

-6

-4

-2

0

Y
[
m
]

Earlier version 

„VLA_21_3,6,9“ 

L = 3 m 

L=2 m 

L=1 m L=1 m 

SXT and OCT 

are not shown 

13,204 m 

Blue – bends 

Red – quads 

Green Sextupoles 

Elements are  

not in scale 

A.Papash.Proc. IPAC-2017,  

IPAC-2018 

E=50 – 500 MeV 

Nominal strength of quads   

KQ  ± 30 m-2  

– 10 times >   MAX-IV 

quads (KQ  ± 4 m-2) 



One Cell.  Length L=11.028 m Parameters of old 

„21_3,6,9“ lattice 

are shown in brackets 

 

E=50  500 MeV  

BR=0.1671,67 Tm 

BENDS   

TH = 22.5 (22.5) 

L=50 cm (30) 

B = 0.13 1,3 T (0.22-2,2) 

R =1.273 m (0.764) 

1=2=11.25   (0) 

STR=3.99 m-2 (0) 

GRAD= (0,676,7) T/m 

 

Quads eff. length  

Q1,3 = 15 cm (15) 

Q2,7,8 = 20 cm 

Q4A-4B  15-15 cm 

Q5A-5B  15-15 cm 

Q6A-6B  15-15 cm 

 

Quads strength  

 Kq  < 16 m-2     (30) 

 G  <  3  30  T/m 

MAX-IV Kq < 4 m-2 

 

Chromatic SXT  

Integr. Strength Ks·L (m-2)  

4A-4-4B= +2.2 / 2.2 / 2.2 (+33)  

5A-5-5B= 11.3 / 11.3 / 11.3  (-35)  

6A-6-6B = +2.1 / 2.1 / 2.1 (+34)  

KsL  < 11 m-2 (40)  

(MAX-IV S < 22 m-2) 

 

SXT effective length 

15-10-15 cm (15)  

Quads  

strentgh (m-2) 

 
Q1=2.138 (5.8) 

Q2=+6.736 (+18.2) 

Q3=4.01 (13.9) 

  

Q4A=+11.7 (+28.7) 

Q4B=+11.485  

  

Q5A=15.305 (20) 

Q5B=16.435   

 

Q6A=+11.65 (+28.9) 

Q6B=+11.6 5   

 

Q7=2.437 (12.1) 

Q8=+8.460 (+26.2) 
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• Gradient Bends (blue)  

• Quads  (red)    

• Chromatic SXT(green) 

• Combined function magnets (Q+S) 

• QUADS in dispersion sections  

    are splitted in doublets   

• Chromatic SXT are splitted in triplets 

• Central SXT of each triplet is flanked  

    between quads 

„3Q_SHORT_5“ cell 

All sextupoles 

 are shown 

6,602 m 

Element  

dimensions 

 not in scale 

Lattice version ”3Q_SPLIT_SHORT_5” 



Lattice  “3Q_SPLIT_SHORT_5”.  half- cell 
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D=25 cm 

Chromaticity    x= 16       y = 21 

Betatron tune   Qx=5.8438    Qy= 8.4605 

 

Phase adv/cell   x=1.4612=2.922          

                            y=2.11512=4.2303 

 

Ph adv(half-cell)  x=0.73052=1.461 (x  ¾)    

                            y=1.0842=2.1151 

Minimization of linear RDT 

by proper choice of  

betatron phase advance 

and mirror symmetry 

 

Second and third order  

Chromaticity terms  

are  reduced 

 

Split quads and sextupoles 

applied to reduce  

overfocusing 

Horizontal and vertical betatron 

functions are WELL separated  

x(S6B-S4A)=(0.64 0.203)2=0.44 2 = 0.88  1 

x(S6-S4)=(0.636 0.208)2=0.43 2 = 0.86    

x(S6A-S4B)=(0.63 0.21)2=0.42 2 = 0.84   

 

  



                           Q1     Q2    Q3     BM      Q4A-4B  Q5A-5B Q6A-6B     BM     Q7    Q8    Q7    BM       Q4A-4B  Q5A-5B  Q6A-6B     BM       Q3    Q2    Q1 
                                                    

Lattice  “3Q_SPLIT_SHORT_5”  One cell 
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VLA _21_3,6,9 

Mirror 

symmetry 

D=25 cm 
Betatron tune    

Qx=5.8438     

Qy= 8.4605 

 

Phase adv/cell    

x=1.4612=2.922          

y=2.11512=4.2303 



DYNAMIC APERTURE.   Lattice “3Q_SPLIT_SHORT_5” 
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3Q_SPLIT_SHORT_5 

3Q_SPLIT_SHORT_5 

Chromatic SXT 
Chromatic SXT 

Chamber 

60 x 40 mm 

Off-

momentum  

=3% 

Chromatic SXT 

3Q_SPLIT_SHORT_5 

SXT int. strength  SL 

4A-4-4B=+2/+2/+2 m-2 

5A-5-5B=-11/-11/-11 m-2 

6A-6-6B=+2/+2/+2 m-2 

DAx = 14…+18 mm (±100 x) 

Ax  120 mm·mr 

 

With errors 

Ax  50 mm·mr 

Ax (MAX-IV) < 10 mm·mr 

DAy = ±5 mm (±50 y) 

axial injection 

might be 

possible  

Dynamic Aperture . Early version  lattice “LWFA_21_3,6,9“  



Off-momentum dynamic aperture as function of  energy deviation 

   Lattice “3Q_SPLIT_SHORT_5” 
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Momentum Acceptance in 

vertical plane is improved by 

adjusting harmonic sextupoles 

 

MAy = 8%..+8% 

CHR+HRM SXT 

early versions of VLA-cSR lattice. strong settings of quads cause over-focusing and non-linear distortions 
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Betatron tune diagram. Lattice “3Q_SPLIT_SHORT_5”  
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Chromatic 

+ 

Harmonic 

Sextupoles 

p= 4% 

p= 8% Chromatic and 

Harmonic sextupoles 

tuned to vanish first order  

and  minimize second  

order chromaticity Chromatic sextupoles 

adjusted to vanish first  

order chromaticity 

By adjusting chromatic and harmonic sextupole families one can  

compensate linear as well as second order chromaticity. 

Tune deviation for off-momentum particles is reduced and 

momentum acceptance is improved  



Betatron tune deviation for off-momentum particles  
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Chromatic and Harmonic Sextupoles as well 

as octupoles located in the dispersion 

sections of a ring compensate first and 

second order chromaticity.  Octupoles to 

adjust ADTS are located in the achromatic 

sections of a ring and switched OFF 

Integrated octupole strength is limited to 

K3L  ±20 m-3 in order to  

 minimize high-order non-linear 

distortions and preserve dynamic 

aperture 

 Betatron tune deviation <  Qx,y 0.03 for     ± 10%  

CHR+HRM-SXT+CHR-OCT 

CHR+HRM-SXT+CHR-OCT 

Lattice “3Q_SPLIT_SHORT_5”.  



Amplitude dependent tune shift. Lattice “3Q_SPLIT_SHORT_5”.  
Octupoles located in achromat section of a ring compensate ADTS  
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ADTS tune shift is reduced by   
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section of a ring  

In order to suppress ADTS the integrated octupole strength is increased to K3L  ±250 m-3  

As a consequence the DA is shrunk in horizontal and vertical planes 
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Early versions of the VLA-cSR lattice suffer from non-linear distortion caused by strong over-focusing 

 

• It was necessary to relax strong settings of early versions (lattice „21.3,6,9“ as an example) and find 

compromises between lattice parameters 

• Quadrupole strength of „21_3,6,9“ lattice Kq>30 m-2 i.e. 10 times MORE of MAX-IV quads (Kq < 4 m-2)... 

• Chromaticity/cell HIGH, dispersion SMALL Dmax<12 cm and required SXT strength is HIGH (SL40 m-2 ) 

• Dynamic aperture (on-momentum)  is SMALL  DAx5..+7 mm   NOT enough for stable circuation 

  

Merit of the „3Q_SPLIT_SHORT_5“ lattice    

 

• Ring dimensions are fitted  to existing FLUTE Bunker while main parameters are improved 

 

• Radius of bending magnets is increased, gradient and edge focusing in vertical direction are applied  

 

• Quads are splitted in doublets QA-QB, distances between elements are increased   

 

• Quads strength reduced from Kq=30 m-2 to  Kq<14 m-2  (still few times higher those for MAX-IV) 

 

• The compensation of horizontal chromaticity is done by sets of  splitted  SXT triplets SXA–SXSXB   

 

• Ring lattice is modelled  to satisfy „I“ condition for mirror symmetry non-interleaved sextupoles 

 

• Max of Dispersion is doubled D=25 cm, integrated SXT strengh reduced S·L<20 m-2 (MAX-IV SL20 m-2)  

 

• Side effect – decreasing of Geometric Momentum Acceptance to  MA ±7%  (6030 mm chamber) 

 

 

 
 

 
 



• Chromatic SXT S4 and S6 are flanked between quads and located at position of  Dmax and Xmax 

• Phase advance between S4 and S6 is close to  and Symmetry conditions are applied 

 

x(S6)=x(S4)   x(S6)=x(S4)   D(S6)=D(S4)   D (S6)=D (S4)        x(S6S4) 

 

• S5 is positioned in the middle of dispersion section at MAX of vertical y(S5) and MIN x(S5)5 cm  

 

• Vertical SXT S5 has little influence on SXT non-linear terms in horizontal plane 

 

• Magnetic rigidity B·R=1.67 T·m (500 MeV) and quads gradient is relaxed B/R<25 T/m (MAX-IV40 T/m) 

 

• Half-cell betatron phase advance close to x3.5 (x1.75)  and Resonance Driving Terms (Qx, 2Qx, 3Qx, 

Qx±2Qy) are reduced due to lattice symmetry and periodicity 

 

• Quadratic (2x ), Cubic (3x) CHROMA and ADTS are minimized by lattice geometry and harmonic SXT 

 

• Dynamic aperture ±5 mm of early lattice versions („21_3,6,9 “) is OPENED to -14..+18 mm (3Q_SPLIT_SHORT_5)  

 

• DA for off-momentum particles (±5%) is enough for stable circulation of  wide momentum spread beam 

 

• Octupoles and decapoles should be added to VLA-cSR lattice to suppress ADTS, quadratic and cubic 

chromaticities etc. but its strengh must be limited in order to preserve stability of betatgron motion 

• Full suppresion of ADTS by octupoles leads to reduction of DA. Full suppression of second order 

chromaticity by octupoles leads to increase of ADTS and cubic chromaticity terms. As a result the MA is 

improved but DA is reduced  

 

 

 

Merit of the “3Q_SPLIT_SHORT_5“ lattice 



Outcome of cSTART Feasibiltiy Studies 

 
• Extensive studies of possible geometry and lattice of the very large acceptance compact storage ring operating in 

the energy range 50 to 500 MeV have been provided 

 

• The main objective of  feasibility studies was to create ring model suitable to store the beam after Laser Wake field 

accelerator with wide momentum spread (  12%)  as well as ultra-short electron bunches in a “fs” range  

 

• More than 40 models of compact ring lattice based on DBA, DBA-FDF, TBA, 5BA cells etc. have been composed, 

simulated, analyzed and merit of different configurations has been carefully studied  

 

• The DBA-FDF  Lattice  with relaxed settings and optimized parameters could be accepted  as a basis for further 

Detailed Design  studies of the Very Large Acceptance compact Storage Ring 

 

• Proposed VLA-cSR lattice model compromises contradictory conditions  

      -- Small circumference of the ring C  50 m 

      -- Small dispersion D< 1525 cm  

      -- Large Dynamic Aperture in the dispersion plane  DAx > 15 mm  

      -- Large Acceptance in both planes  Ax,y > 20 mmmr 

      -- Wide Momentum Acceptance MA  5 10% 

      -- Chromaticity / cell  should be limited to /cell  < 510   (NSLS-II sets limits for SXT /cell  < 3 ) 

 

• The “I” condition is provided. The mirror symmetry at position of horizontal chromatic sextupoles is satisfied  

• Local maximums of horizontal beta-function and dispersion at position of main chromatic sextupoles help to restrict  

sextupole strength. Dynamic Aperture is opened  significantly from DA= 5..+6 mm to DA= 15.. +20 mm  

 

• Phase advance per cell is adjusted to minimize leading Resonance Driving Terms including high order chromaticity 

terms. The dynamic aperture for ON- and OFF-momentum particles is enough to store wide energy spread beam 

 

• Harmonic sextupole and octupole families should be used for non-linear studies in particular to operate the ring at 

negative compaction factor, to manipulate with  bunch length and shape etc. but OCT strength must be limited 



Momentum  Acceptance of KARA ring at 2.5 GeV (OPA simulations)  
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Example of Diffusion map of ESRF 

Frequerncy Analys Map of ALS 
J.Laskar. Frequency Map Analysis and  

Particle Accelerators. Proc.PAC-2003. 

 
A.Nadolski. Methods and Tools to Simulate and Analyze  

Non-linear Dynamics in Electron Storage rings. 

Proc. IPAC-2010. San-Sebastian. Spain. 



Figure and text are taken from presentation of B.Nash at KIT. July 2017. 

„Open problems in electron beam dynamics with applications to Synchrotron radiaton“ 



CONCLUSION 

 

• It is possible to open on-momentum DA of Diffraction Limited Light Sources to more than 

10 mm  even for ultimately low horizontal beam emittance   

•   15  pmrad  

• Optimization of Dynamic Aperture for ON-momentum particles  

might be realized by applying of “-I” condition for NON-interleaved  pairs of sextupoles 

located in  Dispersion sections of  a ring 

 

• MBA cell should be adapted to provide required phase advance  

• 𝝁𝒚 = 𝟐𝒏 ± 𝟏 𝝅 

• MBA Cell should be designed in such a way that pairs of chromatic sextupole are 

located  at mirror symmetry points of a cell 

 

• Dispersion Bump at position of chromatic sextupole helps to reduce SXT strength  

 

• Optimization of beta-function at position of Sextupole could help to open DA 

 

• Improving of Momentum Acceptance (off-momentum DA) might be achieved by families 

of  harmonic sextupoles located in achromatic sections of a ring 

 

• Octupoles to compensate ADTS should be incorporated in Achromat sections of ring. 

Octupole strenghs must be limited  

 


