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Basics (Linear equations)

+  “Original incentive to study the stability of the motion in non-linear dynamic systems has been prompted by

development of Celestial Mechanics in XIX century to describe the orbital motion of Planets” (w.Scandale.
“DYNAMIC APERTURE”, CAS CERN-95-06)

 We discuss here single particle Beam Dynamics. Collective effects are out of scope of talk

» Trajectory of charge particles in magnetic fields of storage ring, composed of (N) periodic cells each of
length (L) and total ring circumference € = L - N, is described by Lorentz equation

DI eI . D
mR" = —-|R' x B]

* Restoring forces are periodic K, (s + L) = K,,(s) and particles oscillate around closed (“reference”) orbit E

Here (Y) stays for horizontal (X) or vertical (Z) components of transverse coordinates. K.Steffen. “Basic Course on
accelerator Optics”. CAS CERN-85-19.

Oscillations of particles in transverse to beam motion direction - fast with respect to slow synchrotron oscillations of energy and phase
-- Transverse and longitudinal planes might be split
--- Motion in the transverse phase space might be considered independently on motion in longitudinal phase space
A.Wolski. US PAC School-2013

Solving Lorentz equation in cylindrical system of

coordinates (R, 0,z) and

---assuming PARAXIAL beam conditions : ot

-~ the deviation of horizontal X(s) = (R(s) — Ry(s))
and vertical (Z) position of particle from reference

orbit R, much less than curvature radius X « Ry reference
--- angular deviations Y’ (s) = dY(s)/ds < 1 trajectory

- one can NEGLECT high order terms and /7
S

--- derive LINEAR equations of harmonic oscillations




If periodic restoring forces acting on particle with reference momentum p, are perfectly LINEAR, the
particle oscillations are STABLE and described by second order homogeneous differential equations

(quasi-harmonic oscillator) with periodic restoring force (HILL equations) (longitudinal coordinate (s) is
independent variable) E.Courant and H.Snyder Theory of of the alternatiing-gradient synchrotron. Ann.Phy, 3 (1958).

d? X(s) d*z (S)

+ k,(s)X(s) =0 + k,(s)Z(s) =0

Radial Focusing term 1/p, in magnets should be included into consideration K, (s) = k,(s)
Flat sector bend is a drift in axial direction k,(s)=0

1 (0B
Focusing strength of quadrupole k,(s) =—k,(s) = B_p( axz)

in bending plane X, =D - (Ap/po) = D& and equations for off-momentum particles are

@ ) + K (s)D(s) = —

po(s)

1 o
Po(s) po

d? D(s)

+ K, (s)X(s) = and

Solution of linear differential equations is LINEAR combination of initial coordinates and momentums and
might be written in matrix form J.Livingood. Principles of Cyclic Acceleratrs. (1961). K.Steffen. High energy Beam Optics (1965).

Y(s) = M(s/sq) - Y(so)

where ?(so) is vector of initial coordinates and momentums in 6D phase space

Y(so) = (X0, Px0, 20, P20 Po> &)



Linear Transfer matrixes (M) follow multiplication rule M(s5/s¢) = M(s3/s1) - M(s1/Sp)
Transfer matrix for full revolution must repeat itself in order for motion to be stable
M(s+L)=M(s+N-L)=M(s)

Necessary and sufficient condition of STABLE motion — transfer matrix [M]™*" is BOUNDED at any n — oo
Solutions of linear equations of motion are Real part of periodic quasi-harmonic function of orbit trajectory (s)
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Betatron function has periodicity of lattice Cell  B,,(s + L) = B,(s)  No LIMIT on the amplitude  Yo(s) = /eﬁy(s)
For the linear lattice the dynamic aperture is infinite

Phase advance (u) and Trace of transfer matrix (M) related as cos(u) = %Tr(M) = %(mll +my,,)

Betatron oscillations are BOUNDED if phase advance (u) has REAL values, thatis cos(u) <1
Thus, main condition of STABLE motion in linear approximation is (G.Guignard. Particle Accelerators, 1986, VV.18)

|ITr(M)| < 2

Integrable motion of particles in accelerators and rings should be stable. Deviations in all 3D planes with respect to central trajectory are finite

and limited. Particles oscillate around reference orbit. Asymptotic unbounded growth of particle coordinates represents unstable behavior




Betatron tunes are defined as number of betatron oscillations per turn (u(s) is phase advance per Cell --
element of periodicity)

0 _wy_N-uy(s)_l ds
Y Wrot - 2m 2m ﬂy(s)

Transfer Matrix should satisfy SYMPLECTIC conditions MT-S-M=S
J.Rees. “Symplecticity in Beam Dynamics: An Introduction”. SLAC-PUB-9939 (2003).

Symplectic matrix (§) is composed of UNIT matrixes I= (1 O)

01
J=S= (—OI (I)) and in 1D phase space S = (_01 (1))
SYMPLECTIC conditions are realized “if” and “when” detM =myimy, — MMy =1

Equations of harmonic oscillations might be derived also from the unperturbed Hamiltonian function (Hg)
where second order terms (x - §) and (62) etc. are omitted

_Px +p§+K(s)(x2_ZZ)

H
0 2 2
Hamiltonian of system as function of canonical variables (g = ;—i, Pr = _S_Zc) is Integral of motion
oH 0H . OH .
H(q, P, t) =3¢ + Zk {a—qk + a—pkp} = const(t) (B.Montague. CAS-95-06)

providing there is no EXPLICIT dependence of Hamiltonian on time () (Z—‘;’ - 0) (s = wt) (‘2—’: - 0)

(energy conservation law)



Lie Operator denoted by symbol : f: acts on function (g) as Poisson brackets in 2n Phase Space
{q1 yq2, - qQn,P1,P2) - pn} (A.Dragt. ,An Overview of Lie Methods for Accelratro Physics“. Proc. PAC-2012. USA)

frg9=1fg]= Z{(%) G_;i) - (:Ti) <3_¢i>}

,o0lving of Hamiltonian equations of motion and finding symplectic maps are equivalent tasks”
Transfer map for an element of length (L) in symplectic Lie operator form is

s1

Mgy_s1 = exp: <: o H(s)ds> = exp(:—LH:)

s0

. . . . . fi_a.. f. 1 . f. R wlee) (5f:)k
Lie generators applied to describe non-linear kicks expfi=1+: f: t5 CGF) 2+ =300 Kl
Canonical transformations simplify problems by choice of proper coordinate system from original
{qx,px,t} variables to new canonical variables {Qy, P} ,t}. (E.Wilson, CAS CERN 95-06)

. doF
H'(Qy, Py, t) = H(qy, P, t) + T
. . . : . : oH' : oH'
New Hamiltonian preserves form of Hamiltonian equations Qi = aP, k=" 500
Different types of GENERATING functions (F) are applied in order to eliminating EXPLICIT dependence of
Hamiltonian on time (% = O) and build new Integral of motion

dF = ) (piday - PdQy) + (H — H)dt
k



NON-LINEAR BEAM DYNAMICS (NBD)

*  “Introduction of non-linear elements into ring lattice will cause oscillations about the closed (reference) orbit to
grow in amplitude for particular tunes” (A.Wolski. “Beam Dynamics in High Energy Particle Accelerators”. 2014.

« High order terms of magnetic fields cause perturbations of linear lattice and leads to restriction on beam
stability: 1-Resonances, 2-Momentum dependence of betatron tunes, 3-Amplitude dependent tune shifts

« Canonical perturbation theory to deal with non-linear BD AWAY of resonances (mQ, +nQ, # k)
(L.Nadolski, Non-Linear Beam Dynamics. NPA-2011-2012. (V2.2).

* Mechanism to change betatron tunes with momentum offset (linear, quadratic and cubic chromaticity)
*  Mechanism to SHIFT betatron tunes with Amplitude of oscillations (ADTS) —linear approximation
 Resonance conditions, resonance width, stopbands

2D Hamiltonian includes linear part (H,) + Perturbation terms (In Light Soures kinematic term (% « 1) is ignored)
A. Verdier. CAS-CERN 95-06. W.Herr. CAS 2013 (CERN-2014-009). P.Streun, CAS-2003 (CERN-2006-002). Y.Cai. NIM-A 645 (2011).

kinematic bend quad sextupole octupole

2 2 2
X\ Px +‘pz X X kl k2 k3
H=(1+2|2 "2 8§+ + —(x2—2z2 Z2(x3 —3x22) + — (x* — 6x2V2 + y*
< +p>2(1+8) p6+2p2+ 2(x z%) +3(x 3xz )+4(x 6x°y> + y*)

1 (0B, 1 (9B,
Quads strength - Ko = ki = 3p ( ax) Sextupole - K¢ = k, = Bp ( dx2

) Octupole -- Kgcr = k3 = B_t) (a;:;z)

» After canonical transformations Hamiltonian of a ring might be represented in Action-Angle variable by com-

bination of linear part and NON-linear contributions (kicks) of quads (H,) , sextupoles (H3) G.Guignard. Part.Acc.
V.18 (1986), J.Bengtsson.SLS Note 9/97.

H(\Vx']x'\l’z r]z:s) X Qx]x + Qz]z + J[HZ(S) + HB(S)]



Phase space ellipse.
Linear motion
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Courant-Snyder Invariant

Figure taken from A.Wolski. US PAC School/2013.

Linear motion: /
after canonical
transformations.
Phase space is

2], = & = yx? + 2axx’ + Bx'?

circle in action-

angle variables \ /

Figure taken from E.Wilson. ,Non- Imear
Resonances”. CAS CERN 95-06.

Phase space plot in Action-angle coordinates (J, ) with
non-linear (Sextupole) term.

Amplitude of Stable Motion is limited and Phase Space
is distorted at large Amplitudes

Separatrix

Unstable
fixed points

J2263/%(s)

SXT~ 31

Kscos3y - Kgcos3y

= \/szlmax =\/BxAx

DA, is cross-section of ring acceptances 4, , at position (s)

Acceptance is limited by ,Separatrix“ connecting UFP and
dividing stable area around reference orbit and area of
unstalble motion (hyperbolic curves with assymptotic

behavior) Figure taken from E.Wilson. ,Non-
linear Resonances”. CAS CERN 95-06.



Phase space plot in Action-angle coordinates (J, ) with
non-linear (Octupole) terms.

Amplitude of Stable Motion is limited and Phase
Space is distorted at large Amplitudes

Period of Pendulum oscillations
depends on angle (Amplitude of

oscillations).
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expansion is valid for SMALL Amplitudes...

Acceptance is limited by ,Separatrix® dividing stable area
around remote (external) Fixed points from central area
of stable motion around reference orbit

sIslands of stability“ are presented at very large

Amplitudes, while we consider Ring Acceptance
as an Area of closed curves around reference orbit. * L.Evans.. ,The effect of an Octupole near a fourth-order resonance ,,
CAS CERN 84-15. p.319.

Figure taken from E.Wilson. ,Non-linear Resonances”. CAS CERN 95-06.



Exciting of Note that there are two conditions for the action of a particle
Third-Integer to be driven to large values by the sextupoles in a lattice:
Resonance
Qx — N/3 1. The tune of the lattice must be close to an integer, or a
is applied for third integer.

Slow extraction
of particles 2. The resonant driving term must be significantly large.

at Proton
Synchrotrons . . . . .
y Without OptICS correction. After OptICS correction.
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Horizontal phase space in the ALS, close to a third-integer
resonance, produced by tracking in a model of the lattice.

D. Robin, J. Safranek, W. Decking, “Realizing the benefits of restored
periodicity in the Advance Light Source,” PRST-AB, 2-044001 (1999).
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Effect of third-integer resonance on beam distribution. Top: SR light
monitor images. Bottom: (simulated) horizontal phase space.

D. Robin, J. Safranek, W. Decking, “Realizing the benefits of restored
periodicity in the Advance Light Source,” PRST-AB, 2-044001 (1999).

Slide taken from presentation

of D.Newton at KIT.2017.



Dynamic aperture for ON-momentum particles is a cross-section of Phase space Acceptance at (s)

(Ay) is a ring Acceptance = maximum area of stable oscillations limited by Separatrix

DAx(S) = \/Zlmax Bx (S) = \/Ax ﬁx(s)

Analytical expressions
J.Gao. Analytical Estimation of the Dynamic Aperture of Circular Acceleratros. LAL/RT 00-02 (2000).

Single Sextupole of strength (K) located at position (s1) limits horizontal Dynamic Aperture at position (s)

JW(l)

V3 B,(s1)3/2 \|Ks|Lg

DA;Xt(S) = \/zlmax By (s) =

Single Octupole of strength (K,cr) located at position (s,) limits horizontal DA at position (s)

VBx(s) 1

Bx(s2) ||KocrlLocr

DASU(S) = v 2  max Bx (5) =

Estimation of vertical DA (Courant Snyder Invariant)

Bx(sl
ﬂy(sl)

DAS*(s) = (DAZ — x2)

(|IKg|Lg) and (|Kocr|Locr)- integrated strengths of Sextupole and Octupole. Higher strength— less DA

High value of beta-function at position (s) (Septum) preferable for injection

High Dispersion (D,) at SXT location allows to reduced SXT strength --- DA is improved

Small B, at location of SXT (OCT) might improve DA but Higher strength of non-linear element will be required



Dynamic Aperture in horizontal plane of a single (2m) multipole (m>3)
J.Gao. Analytical Estimation of the Dynamic Aperture of Circular Acceleratros. LAL/RT 00-02 (2000).

1 1

DA =T s ) et
|Km—1|L

me (SZm)

If non-linear elements are independent -- no special phase and amplitude relations between SXT (OCT)

Ngxr Mocr

1 _ N z 1 4
DAsotal i DAgxr l. DAocr

Scaling

R.Bartolini. ,Review of lattice design for low emittance rings“. BD Newsletter, No.57, 2012.
E.Levichev, A.Bogomyagkov, P.Piminov. Proc.IPAC-2014, Dresden. Private Comm.

In approximation of small phase advance between two sextupoles one can estimate reduction of horizontal
Dynamic Aperture for ultra-low emittance Synchrotron Light Sources according to scaling Law

nat Dmax 1
DAX(S) |£cell |£cell |KS| . LS
and for vertical Dynamic Aperture
DAy (s s
pa,(s) ~ PAx () |Bx(S)

legett| | Bz(s)

Dmax

e"at __ natural emittance after SR damping ~ £<¢! -- natural chromaticity per cell -- Dispersion (max)

High natural CHR + reduced Dispersion -- main factors limiting DA of ultra-low emittance Light Sources

Small Dispersion -- to keep ultra-low emittance, = High chromaticity — due to strong Quads and SXT



RESONANCE DRIVING TERMS

The concept of RESONANCE DRIVING TERMS is applied when nonlinear
components are dependent -- special phase and amplitude relations are introduced

for cancellation... G.Guignard Part.Acc.1986,v.18, pp.129-165. (J.Bengtsson. [1] SLS Note 9/97. [2] Beam
Dynamics Newsletter, N0.57.2012. [3] Nucl.Inst.Meth. A404 (1998) 237-247.)

Symplectic form of a lattice Hamiltonian integral is contributed by individual
Hamiltonians of each Quadrupole H,,,, Sextupole H;,, and might be approximated by
a Sum of different modes — RDT

| (H2(5) + Hs()) ds = hs € ) Byt

Hamiltonian coefficients hjy,,, contain the contribution from all the multipoles of order

(n=j+ k+ 1+ m). Even sum (j + k) corresponds to normal multipoles (B,,) while
odd sum (I + m) - to skew multipoles (4,,)

Driving terms are derivatives of Lie operator over action variable
dh3

h; =—

jklmp 3 xy

“LINEAR” (first order) Hamiltonian modes and their complex conjugates (*) are
proportional to the first order of integrated sextupole strength (KL)



» Firstorder RDT and their complex conjugative (*) is a SUM of integrated strengths of N¢yr sextupoles and
M 4y ap quadrupoles with scaling factors (“lever of arm”) over different frequencies multiple to betatron phase

advance U,n,, Uy at element location

Nsxt j+k  l+m
. — _ht — _ . 2 .p 2 . pP. L i(j-Kuxmti(l-m)u
h]klmp = jklmp — 2 (Ks * Ls)n xn yn Dy,-e xn yn
n
Mouap j+k  l+m
- _ . 2 .p 2 | HiU-kBpuxntil-m)u
= Z (KQ LQ)n xn yn € o yn

n p%0

* Quadrupoles at dispersive sections (D # 0) — contribute to chromatic Hamiltonian driving modes (p # 0)
* Quads in achromatic sections (D = D’ = 0) do NOT contribute to RDT (in theory)

» Sextupoles contribute to both chromatic RDT (p # 0) in dispersive sections (D # 0)
 AND geometric RDT(p = 0) in achromatic sections (D = D' = 0)

+ Chromatic sextupoles compensate natural negative chromaticity and its strengths are fixed

« Additional harmonic sextupoles in achromatic sections compensate shrinking of area of stable oscillations
(reduction of Dynamic Aperture) caused by main chromatic sextupoles

» Driving modes ideally should be SUPPRESSED either CANCELLED because they are the source of ALL the
resonances considering long term behavior by multiple repetition of the lattice structure

| Rjctmp |
2sin{n|(j — K)QE" + (I -m)Q§! |}

|h;'xljclmp| =



« Table 1. LINEAR Resonance Driving Terms (RDT) and their effects

N Linear Effect Comments Phase
Driving terms dependence
1 hl 1001 (CrX _lin) an /06 Linear Chromaticity (hor) 5}51) chromatic
2 hogr1y (CrY _lin) 0Q, /06 Linear Chromaticity (vert) g“y(l) chromatic
3 h —_h 20 + parametric half-integer resonance P chromatic
20001 02001 Qx Qs synchro-betatron coupling
4 Rogr01 = _hgoozl 2Qy +Q, parametric half-integer resonance i2p, chromatic
synchro-betatron coupling
5 h =—h oD/ 0o Second order dispersion ol chromatic
10002 01002 0
DY =0D/0o
' i 4ty tri
6 h1000=—12000 0, et geometric
—_— * i- 5 t .
7 h10110__ 01110 Qx e M geometric
8 h30000 = _h03000 3Qx o3 geometric
* a2, tri
7 h10200 = _hmozo Qxy + 2Qy (2, ) geometric
" i\p =2, tri
10 l"loozo = _h01200 Qxy - 2Qy e (211, geometric
Linear chromaticity W 1 Nouap 1 Mgxr
is INDEPENDENT hioot =& = —2— > (KoLo) Byn+7= ) (KsLs)mBymDnm
on phase advance u n m




SECOND ORDER RESONANCE DRIVING TERMS

h® o (Ksxr - Lsx7)?

Second order RDT drives synchrotron sidebands of LINEAR Resonance modes. When Linear RDT are
vanished either reduced the second order terms i.e. corresponding sidebands are week and ignored

It is mandatory to suppress (minimize) first order terms in order to reduce second order resonance modes

Amplitude Dependent betatron Tune Shifts (ADTS)

Cross-talks of first order RDT in sextupoles as well as between different sextupoles produce phase
independent second order RDT and cause ADTS. In linear approximations ADTS are

aprs_oh® ADTS_0h®
SQ alx ~ axx]X + anyY SQ = Ay ~ axy]X + ayy]Y

ADTS originated from an amplitude or momentum dependent shift of the closed orbit in the sextupole.
Orbits must be corrected to the magnetic axis of a sextupole in order to minimize ADTS. Beam Position
Monitors must be located as close as possible to each sextupole in order to control beam centroid

*  Octupols applied to COMPENSATE ADTS caused by Sextupoles

Noct Noct

2
=+ F (Koct " Loce) * ﬁyn Axz; = — g Z (Koct * Loct) * Bxn " Ban
n



One might consider RDT as a sum of complex vectors
Each complex vector represents local Hamiltonian of sextupole either quadrupole g6 taken from

Phase of each vector is multiple of betatron phase advance at element location A Streun-fAS CERN-2006.

Im
Ten first order Hamiltonian terms are linear in sextupole strength \\(\
Two real RDT drive horizontal and vertical Chromaticies (j=k) and (I=m) (D"-._
n: -
1 1 N 1 M Re
h11001 =&, " = —EZnQ"AD(KQLQ)nﬁyn + EZmSXT(KSLS)mﬁymDm

Only SXT at dispersive sections (D # 0) control linear chromaticity £ and their settings are fixed
Hamiltonian RDT of chromatic SXT accumulated ADDITIVELY regardless of phase (u ).

Amplitudes of chromatic SXT added / subtracted depending on sign of element strength and sign of (D)
Harmonic SXT and quadrupoles located at achromatic sections (D = D' = 0) do not contribute to &)
Strengths and positions of HARMONIC SXT adjusted to compensate geometric aberrations from CHR SXT

Eight first order modes and their complex conjugative are phase dependent -- resonance behavior

9 families of SXT could be enough to eliminate all excitation modes but at phase advance of cell close to
U, = 180° Hamiltonian RDT proportional to (2u,) will be amplified coherently by all SXT

Linear system of 9 equations degenerates down to rank 8 and no solution to suppress ALL RDT

Lattice optics --adjusted to cancel / minimize RDT by proper phase advance between sections of the lattice



applying mirror symmetry conditions and phase advance between CELLS close to quarter of integer
py ~ (k£0.25) 21

resonances associated with 2u,, phase dependent RDT could be cancelled between cells (2u, = m),
resonances (uy ,3u, ) and coupling resonances (u, + 2u,) — between TWO pairs of cells

Q}.,._‘!\440 ZQY ‘..720
Periodicity AQ,, = N - u$¢'[2AQ,, 3AQ, | - integer (N=5) @—-—-—-—Ij N > -

Figure taken from A. Streun. CAS CERN-2006.

To compensate linear CHR and cancel some RDT " — I, condition is applied. Non-interleaved pairs of
sextupoles are located at mirror symmetry points of lattice sections with phase advance multiple to

py=(2nxtm S1 Xmax s2
Twiss Ag1 = —Ug2 B.S'lz BSZ Xo m Xo
parameters D(sy) = D(s) D'V = —D'(s,) p=(2n+1)n

< a
< g

In this case RDT of sextupoles proportional to 2u,, will amplify itself (rank of matrix is reduced — degradation problem)

To minimize RDT proportional to ODD tunes, one need to provide phase advance between lattice sections
close to u, = (2n + 1)m. Complex Hamiltonian modes with phase proportional to 2u,, will be added to each

other and amplified instead of to be cancelled.
Location of SXT in a sequence of EQUAL phase advance steps (Au,.), (An,) might help to limit RDT

General symmetry conditions full cancellation of non-linear terms of two sextupoles (thin lens approx.)
Apz_1=nm Bz1/Bx1 = Bz2/Bx:2

(Sx1)BYE = —(—D)"(Sx2) By D= —(-1)"D,

G.Xu. ,General Conditions for self-cancellation of geometric aberrations in a lattice”. Phys. Rev. A 8, 104002 (2005)



Difraction Limited Light Source (E.Levichev. BINP Proposals. 2013)
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Figure 10: Split magnet TME cell for ultimate storage
A.Bogomyagkov, E.Levichev, P.Piminov. Proc. IPAC-2014.
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E.Levichev. ,Difraction Limited electron storage ring with large DA®. BINP Proposals. 2013.



Comparisoin of DLLS Projects

MAX IV 7BA 3GeV | 528m 320pm | 500mA | DA 20 mm |
ESRF Phase Il | 7BA 6 850 130 200 10 mm |
Spring-8 6BA 6 1400 67.5 300 3 mm !
| Diamond 4-57BA | 3 560 45-300 | 300 2 mm
ALS 5-7BA |2 200 50-100 | 500 2-3 mm
Our proposal 7BA 3 1300 15 200 40 mm
Pep-X 7BA 4.5 2200 1 200 10 mm
{USR 7BA o | 6200 3 100 08mm |

Original table -- R.Bartolini. “Ultimate storage rings”. CLIC Workshop 2013. CERN.

Table taken from E.Levichev. ,Difraction Limited electron storage ring with
large DA". BINP Proposals. 2013.

It is commonly recognized that Required DA for Light Sources to ensure beam injection

DAy = +10 mm

to provide reasonable Life time

Momentum Acceptance should be MA= ‘;—Pz + (2+4)%
0

Ty, = 10 hours



Lattice of cSTART ring. Relaxed parameters
”3Q_SPLIT_SHORT_5” lattice version fitted to the FLUTE Bunker 15 x 14 m

Parameters of ,21_3,6,9“ lattice
are shown in brackets 0 SXT and OCT I I I L=2 ‘m 'I'I Elements are
Circumference [m] 44.112 (41) are not shown \' - .ﬂ notin scale

|
Horizontal Tune 5.8438 (11.31) ‘\\\\ \

Vertical Tune 8.4605 (2.61)

. -2 - Q\
Nat. hor. Chromaticity —16 (-27) a
Nat. vert.Chromaticity —21 (-19) N
Chr/Cell -4/ -5.2 (-6.8/(-4.8)

MAX-IV Chroma (h/v) -50/-44
MAX-IV CHR/Cell -2.5/-2.2
NSLS-Il CHR/ Cell <3|

ESRF-100 pm / Cell -3.6/-2.7 — -6 -
S E
Mom compact. 6.034E-03 (3.6E-03) — = % Nominal streng
> Kqa<%30m?2
— 10 times >

Hor.damp.partition Jx 1.397 (0.97) .

Energy 50 MeV =2 )

Rad.energy/turn [MeV] 0.00

Natural Emittance [nm] 0.18 (0.1) -2,

Appr.vert. Emittance [pm] 0.31 -10 - é ‘9

Natural energy spread 4.24E-05 é "129 ‘ |

Hor. damping time [s] 24  (20) A -6 //4 -2 0

Vert. damping time [s] 34 (19) ‘/ X [m]

Long. damping time [s] 21 (9) ~-12 4 ,’ 13.204'm

Radiation Integrals: Blue — bends 7

11 [m]  2.662E-01 Red - quads ll."]

12 [1/m] 4.935E+00 Green Sextupoles ‘ ‘ ‘ ‘

13 [1/m2] 3.876E+00 A.Papash.Proc. IPAC-2017,
14 [1/m] -1.96E+00 IPAC-2018 -0 -4 -2 0 2

15 [1/m] 3.389E-01 X[m]



Parameters of old
»21_3,6,9" lattice
are shown in brackets

E=50 + 500 MeV
B-R=0.167+1,67 T-m
BENDS

TH = 22.5° (22.5°)

L=50 cm (30)
B=0.13+1,3T (0.22-2,2)
R =1.273 m (0.764)
01=62=11.25° (0)
STR=-3.99 m-2 (0)
GRAD= —(0,67+6,7) T/m

Quads eff. length
Q1,3=15cm (15)
Q2,7,8=20cm
Q4A-4B 15-15cm
Q5A-5B 15-15cm
Q6A-6B 15-15cm

Quads strength
|Kgq| <16 m=2
|G|< 3+30 T/m
MAX-IV Kq < 4 m2

(30)

Chromatic SXT

Integr. Strength Ks-L (m)

One Cell. Length L=11.028 m

Quads
strentgh (m=2) O

Q1=-2.138 (-5.8)
Q2=+6.736 (+18.2)
Q3=-4.01 (-13.9)

Q4A=+11.7 (+28.7)
Q4B=+11.485

Q5A=-15.305 (20’
Q5B=-16.435 5
QBA=+11.65 (+28.¢
Q6B=+11.6 5

Q7=-2437 (-121)

Q8=+8.460 (+26.2) = -3

4A-4-4B=+2.2 2.2 [ 2.2 (+33)

5A-5-5B= —11.3/11.3/ 11.3 (-35)
BA-6-6B = +2.1/2.1/2.1 (+34)

IKs-L | < 11 m2 (40)
(MAX-IV S <22 m=)

SXT effective length
15-10-15cm (15)

=
-4
-5
-6

Lg=1m

L/2=1 m

Gradient Bends (blue)
Quads (red)
Chromatic SXT(green)

Combined function magnets (Q+S)
QUADS in dispersion sections

are splitted in doublets

Chromatic SXT are splitted in triplets
Central SXT of each triplet is flanked

between quads

Q1 Q2 Q3 sy

4.8 78

Element
dimensions

not in scale

-51 ,3Q_SHORT_5“cell
All sextupoles
-6 are shown

3 4 5 6

X [ m :| Lattice version "3Q_SPLIT_SHORT_5"



[m]

Betafunctions

Lattice “3Q_SPLIT_SHORT 5”. half- cell

Chromaticity &x=-16 gy =-21
Betatron tune Qx=5.8438 Qy= 8.4605

Phase adv/cell ,=1.461-272=2.922x
1,=2.1151-27=4.2303

Ph adv(half-cell) 1,=0.7305-22=1.4617 (v~ %)
9 14,=1.08427=2.11517

AL (SBB-S4A)=(0.64— 0.203)-27=0.44- 27 = 0.88 7~1n
8 - Aw(S6-S4)=(0.636- 0.208)27=0.43- 2= 0.86 x
A (SBA-S4B)=(0.63— 0.21)27=0.42- 2= 0.84 1

D=25 cm

7 _
Minimization of linear RDT
by proper choice of

6~ betatron phase advance
and mirror symmetry

5 _

Second and third order
Chromaticity terms
4 - are reduced

Split quads and sextupoles
3 - applied to reduce
overfocusing

Horizontal and vertical betatron
functions are WELL separated

O T T

Q1 Q2 Q3 BM
S1 s11 s2 s21 S3

AN

= omm e e— o — - -

Q4A - Q4B Q5A-Q5B Q6A-Q6B
S41 S4A-S4-S4B S51 S5A-S5-S5B S61 S6A-S6-S6B S62

BM

Q7 Q8

S7 S81 S8

[m]

Dispersion



[m]

Betafunctions

10 -

Betatron tune

Lattice “3Q_SPLIT_SHORT_5" One cell

VLA 21 3,6,9

Qx=5.8438 D=25 cm
Qy= 8.4605 /\ ﬂ\ -
m / \\ // \ m - L 0.2
Phase adv/cell / \ / \ \ i '
1,=1.461-27=2.922 \_/ \ \\
9 1,=2.1151-27=4.2303 7 / \ / \ .
/ Y F0.1
0.0
- -0.1
Mirror
symmetry
- -0.2
. 0.3
- -0.4
- -0.5

" e ——— i —

Q1 Q2 Q3

BM  Q4A-4B Q5A-5B Q6A-6B BM Q7 Q8 Q7 BM

Q4A-4B Q5A-5B Q6A-6B BM

Q3 Q2 o1

m]

[

Dispersion



DYNAMIC APERTURE.

Chromatic SXT

DAy = 5 mm (50 o))
axial injection
might be
possible

‘r
L

|

|

SXT int. strength S-L
A-4-4B=+2/+2/+2 m?

1
|

|

1
u|

A-6-6B=+2/+2/+2 m2

T4

[

j 5A-5-5B=-11/-11/-11 m2
[ 6

|

3Q_SPLIT_SHORT 5

DAX = —14...+18 mm (+100 &)

Ax ~ 120 mm-mr

With errors
Ax ~ 50 mm-mr
Ax (MAX-IV) <10 mm-mr

0
-20

-10 0

10

X [mm]
~ Dynamic Aperture . Early version lattice “LWFA_21_3,6,9“

\\ Chromatic SXT

ON-momentum

SEX=+34 m?
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X
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Off-momentum dynamic aperture as function of energy deviation
Lattice “3Q_SPLIT_SHORT_5”"

dp/p

7 % 0
Bl L - -
0 ; = %I;I(l; 7 ONLY 744 CHR+HRM SXT
f‘ % L“Li Chromatic 1 N
I/ r I i \ i gt§l;hzl§:?qkﬁﬂﬁ:ij
o 3Q_SPL£T_SHORT_ < 6 Sextupoles | 6
I 1 I
] y 5 3Q_SPLIT_SHORT_ | 3Q_SPLIT_SHORT_5
OFF-momentym \
| Acceptance  \_ || Ea - |
o horizontal plane | [ | = }
‘L MAX =—6%..+6%: H‘ >3 }
1 ‘ ‘
L ' } Momentum Acceptance in
F 27 OFF-momentum } vertical plane is improved by
SXT int. st|'2en / Acceptance F adjusting harmonic sextupoles
=+2/+ = a 4
5A-5-5B=-1 1// 1/-11 m=2 Chamber 1 vertical plane Chamber .
| B6A-6-6B=+2/43/+2 m?2 60 x 40 mm MAy= —4%..+5% 60 x 40 mm MAy = —8%..+8%
‘ ‘ ‘ O T T T T O T T T T T T
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X [rmm] dp/p (%] dp/p [%]

early versions of VLA-cSR lattice. strong settings of quads cause over-focusing and non-linear distortions
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Qy

8.7 1 M t Chromatic .
om um \ Sextupoles
d na@n
= +4% N
8.6 ™ K \ 8.
.
~L
~_ \ //
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Betatron tune diagram. Lattice “3Q_SPLIT_SHORT_5”

5.6 5.7

By adjusting chromatic and harmonic sextupole families one can
compensate linear as well as second order chromaticity.

Tune deviation for off-momentum particles
momentum acceptance is improved

is reduced and
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Betatron tune deviation for off-momentum particles

.00

.01+

.02

] Chromatic and Harmonic Sextupoles as well
CHR T RM-SXT+CHR-OCT as octupoles located in the dispersion
~ N sections of a ring compensate first and
Tune diagram N second order chromaticity. Octupoles to
Momentum spread N\ adjust ADTS are located in the achromatic
=+10% ~_\ // sections of a ring and switched OFF
N\
T
—/ \\ . Integrated octupole strength is limited to
i N\ K;-L <20 m3 in order to
— e minimize high-order non-linear
T A distortions and preserve dynamic
aperture
e
1
0.03 1 CHR+HRM-SXT+CHR-OCT

o 0.02

b 0.01

3

<

3

Betatron tune deviation < 6Q, ,<0.03 for 5§ < £ 10%
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Qy

Amplitude dependent tune shift. Lattice “3Q_SPLIT_SHORT_5".

Octupoles located in achromat section of a ring compensate ADTS

10+
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/1000]

horizontal tune shift

Vertical
tune shift
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Early versions of the VLA-cSR lattice suffer from non-linear distortion caused by strong over-focusing

It was necessary to relax strong settings of early versions (lattice ,21.3,6,9“ as an example) and find
compromises between lattice parameters

Quadrupole strength of ,21_3,6,9" lattice Kq>30 m-2 i.e. ~10 times MORE of MAX-IV quads (Kq < 4 m2)...
Chromaticity/cell HIGH, dispersion SMALL D, ,,<12 cm and required SXT strength is HIGH (S-L~40 m2 )
Dynamic aperture (on-momentum) is SMALL DAx=~-5..#7 mm NOT enough for stable circuation

Merit of the ,,3Q_SPLIT_SHORT_5¢ lattice
Ring dimensions are fitted to existing FLUTE Bunker while main parameters are improved
Radius of bending magnets is increased, gradient and edge focusing in vertical direction are applied
Quads are splitted in doublets QA-QB, distances between elements are increased
Quads strength reduced from Kq=30 m-2 to Kq<14 m-2 (still few times higher those for MAX-I1V)
The compensation of horizontal chromaticity is done by sets of splitted SXT triplets SXA-SX-SXB
Ring lattice is modelled to satisfy ,—I“ condition for mirror symmetry non-interleaved sextupoles

Max of Dispersion is doubled D=25 cm, integrated SXT strengh reduced S:L<20 m-2 (MAX-IV S-L~20 m2)

Side effect — decreasing of Geometric Momentum Acceptance to MA< *7% (60x30 mm chamber)



Merit of the “3Q_SPLIT_SHORT_5“ lattice
Chromatic SXT S4 and S6 are flanked between quads and located at position of D, ., and fymnax

Phase advance between S4 and S6 is close to T and Symmetry conditions are applied
B(S6)=4(S4) «(S6)=—,(S4) D(S6)=D(S4) D’(S6)=—-D’(S4) 1, (S6-S4)~n
S5 is positioned in the middle of dispersion section at MAX of vertical 5,(S5) and MIN 5,(S5)~5 cm
Vertical SXT S5 has little influence on SXT non-linear terms in horizontal plane
Magnetic rigidity B-R=1.67 T-m (500 MeV) and quads gradient is relaxed dB/oR<25 T/m (MAX-IV~40 T/m)

Half-cell betatron phase advance close to p,~3.5 (v,~1.75) and Resonance Driving Terms (Qx, 2Qx, 3Qx,
Qx£2Qy) are reduced due to lattice symmetry and periodicity

Quadratic (&,, ), Cubic (&,) CHROMA and ADTS are minimized by lattice geometry and harmonic SXT
Dynamic aperture £5 mm of early lattice versions (,21_3,6,9“) is OPENED to -14..+18 mm (3Q_SPLIT_SHORT_5)
DA for off-momentum particles (6<*5%) is enough for stable circulation of wide momentum spread beam

Octupoles and decapoles should be added to VLA-cSR lattice to suppress ADTS, quadratic and cubic
chromaticities etc. but its strengh must be limited in order to preserve stability of betatgron motion

Full suppresion of ADTS by octupoles leads to reduction of DA. Full suppression of second order
chromaticity by octupoles leads to increase of ADTS and cubic chromaticity terms. As a result the MA is
improved but DA is reduced



Outcome of cSTART Feasibiltiy Studies

Extensive studies of possible geometry and lattice of the very large acceptance compact storage ring operating in
the energy range 50 to 500 MeV have been provided

The main objective of feasibility studies was to create ring model suitable to store the beam after Laser Wake field
accelerator with wide momentum spread (o ~ 1+2%) as well as ultra-short electron bunches in a “~fs” range

More than 40 models of compact ring lattice based on DBA, DBA-FDF, TBA, 5BA cells etc. have been composed,
simulated, analyzed and merit of different configurations has been carefully studied

The DBA-FDF Lattice with relaxed settings and optimized parameters could be accepted as a basis for further
Detailed Design studies of the Very Large Acceptance compact Storage Ring

Proposed VLA-cSR lattice model compromises contradictory conditions
-- Small circumference of the ring C <50 m
-- Small dispersion D< 15+25 cm
-- Large Dynamic Aperture in the dispersion plane DAx > 15 mm
-- Large Acceptance in both planes Ax,y > 20 mm-mr
-- Wide Momentum Acceptance MA ~ 5 +10%
-- Chromaticity / cell should be limited to [E/cell | <510 (NSLS-ll sets limits for SXT |E/cell | < 3)

The “—I” condition is provided. The mirror symmetry at position of horizontal chromatic sextupoles is satisfied

Local maximums of horizontal beta-function and dispersion at position of main chromatic sextupoles help to restrict
sextupole strength. Dynamic Aperture is opened significantly from DA= -5..+46 mm to DA= -15.. +20 mm

Phase advance per cell is adjusted to minimize leading Resonance Driving Terms including high order chromaticity
terms. The dynamic aperture for ON- and OFF-momentum particles is enough to store wide energy spread beam

Harmonic sextupole and octupole families should be used for non-linear studies in particular to operate the ring at
negative compaction factor, to manipulate with bunch length and shape etc. but OCT strength must be limited



Momentum Acceptance of KARA ring at 2.5 GeV (OPA simulations)
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UNDERSTANDING THE DYNAMIC MOMENTUM APERTURE OF THE
ADVANCED LIGHT SOURCE*

8 ! ! ! ! ! C. Steter, D. Robin, Y. Wu, LBNL, Berkeley, CA94720, U.S.A_;
: : : : : V» Decklne DESY. Hamburg. Germany: J. Laskar, L. Nadolski. IMC-CNRS, Paris, France
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Figure 1: Scan of the RF amplitude and therefore the lon-
gitudinal bucket height for three different sets of horizontal
and vertical chromaticities (1.5 GeV).

Figure 5: Simulation of a frequency map with the energy
offset and the horizontal oscillation amplitudes as the vari-
ables spanning the configuration space. The color code in-
dicates the diffusion rate on a logarithmic scale.



J.Laskar. Frequency Map Analysis and
Particle Accelerators. Proc.PAC-2003.

A.Nadolski. Methods and Tools to Simulate and Analyze

Non-linear Dynamics in Electron Storage rings.
Proc. IPAC-2010. San-Sebastian. Spain.

Example of Diffusion map of ESRF
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Map of ALS

C. Steier, D. Robin, J. Laskar,
L. Nadolski, "“Lattice model
calibration and frequency map
measurements at the ALS,)”
Proc. EPAC2000, Vienna,
Austria (2000).

D. Robin, C. Steier, J. Laskar,
L. Nadolski, “Global dynamics
of the Advanced Light Source
revealed through experimen-
tal frequency map analysis,”
Phys. Rev. Lett. 85, 3, pp.
558-561 (2000).



Figure and text are taken from presentation of B.Nash at KIT. July 2017.
,Open problems in electron beam dynamics with applications to Synchrotron radiaton*

Widely used Codes for electron rings

'——Elegant—
APS / y.
M. Borland et. al / MAD-X/PTC

CERN- module structure
with organizers /

Sy

BMAD
?9? \ / Cornell
. - AT ' D. Sagan
Electron beam Tracking codes \ —
— \ v N OPA
So many codes that do the same thing 0~ T N PSI | Tracy2/3 -
) / P \ A. Streun | J. Bengtsson |
Important to know what’s in the code you use, / | N\
but not so useful to keep reinventing the https://en . wikipedia.org/wiki/Accelerator_physics_codes

wheel.
Lattice conversion is a pain.

Each lab has preferred code: challenge for
those switching labs!

My experience with Tracy and Accelerator
Toolbox: can we create a viable multi-
laboratory open source collaboration?



CONCLUSION

« ltis possible to open on-momentum DA of Diffraction Limited Light Sources to more than
+10 mm even for ultimately low horizontal beam emittance

 £~15 pm-rad
*  Optimization of Dynamic Aperture for ON-momentum particles

might be realized by applying of “/” condition for NON-interleaved pairs of sextupoles
located in Dispersion sections of a ring

 MBA cell should be adapted to provide required phase advance
- u=0Cntm
« MBA Cell should be designed in such a way that pairs of chromatic sextupole are
located at mirror symmetry points of a cell
« Dispersion Bump at position of chromatic sextupole helps to reduce SXT strength

»  Optimization of beta-function at position of Sextupole could help to open DA

« Improving of Momentum Acceptance (off-momentum DA) might be achieved by families
of harmonic sextupoles located in achromatic sections of a ring

* Octupoles to compensate ADTS should be incorporated in Achromat sections of ring.
Octupole strenghs must be limited



