Diagnostics, controls, automation and feedbacks

Beam tests and commissioning of low emittance storage rings KIT 18-20 Feb 2019

Session chairs: Ubaldo Iriso, Ian Martin, Ilya Agapov

Automated Commissioning Plans for the APS Upgrade

Vadim Sajaev

Beam Tests and Commissioning of Low-Emittance Storage Rings February 19, 2019

Automation is a key to fast commissioning

- APS-U will have to be commissioned is 3 months
- We see automation as a key to fast commissioning

V Sajaev

- Lattice commissioning consists of
 - Establishing first turn
 - Multi-turn trajectory correction
 - Orbit correction
 - Beta function and coupling correction

E	rrors	us	sed	in commissioning	simulation
	1		1.		100

Litors used in commissioning simulation.				
$100~\mu\mathrm{m}$				
$30~\mu\mathrm{m}$				
$1 \cdot 10^{-3}$				
$1 \cdot 10^{-3}$				
$0.4~\mathrm{mrad}$				
$0.4~\mathrm{mrad}$				
$0.4~\mathrm{mrad}$				
5%				
$500~\mu\mathrm{m}$				
5%				
$30~\mu\mathrm{m}$				
$3~\mu\mathrm{m}$				
$0.1~\mu\mathrm{m}$				
1 mrad				

In simulations machine will start up after 800 injections (closed orbit)

Design parameters (emittance) reached

Hope to commission fully automatically

A toolbox for simulated commissioning of light sources Thorsten Hellert, LBNL

Magnet errors

– Magnet offset = 30 µm

- Raft offset = $25 \mu m$

- Plinth offset = $100 \mu m$

- Arc offset = 100 μ m

– Magnet roll = 0.2 mrad

– Magnet strength = 0.1%

Diagnostic errors

- BPM offset = 500 μ m

– BPM cal. error = 5%

- BPM noise (TbT) = $3 \mu m$

- BPM noise (CO) = $1 \mu m$

- BPM roll = 0.4 mrad

– CM cal. error = 5%

- CM roll = 0.4 mrad

Advanced Light Source Upgrade (ALS-U)

A toolbox for simulated commissioning of light sources Thorsten Hellert, LBNL

Choice of toolbox implementation

- Commissioning simulation required for two different machines
- ALS-U will be operated with Matlab Middle Layer (MML)
- Easy communication between MML and Accelerator Toolbox (AT)
- AT implementation of ALS-U commissioning allows for experiments at current ALS

Realistic workflow of toolbox important

T. Hellert

Detailed alignment model

Startup demonstrated in simulations

ALS-U Technical Nodes

Technical Note	ALSU-AP-TN-2019-04
Technical Note	ALSU-AP-1N-2019-04
Model independen	2-turn BBA procedure for early commissioning of
	the ALS-U storage ring
	Thorsten Hellert

The role of bunch by bunch real time feedbacks in LESR

Alessandro Drago INFN Frascati & Tor Vergata Rome University

Having in mind this goal, the bunch-by-bunch feedback is not only a control system but also a diagnostic device that can work both as a simple bunch-by-bunch acquisition system and as a flexible generator of special excitations.

The basic R&D ideas to adapt the DAFNE transverse bunch-by-bunch feedback systems for low emittance beams were the followings:

- 1) Less noise ==> low noise analog fe, ADC & DAC @ 12/16/20 bits
- 2) More sensitivity ==> low noise analog fe, ADC & DAC @ 12/16/20 bits
- 3) Larger dynamic range ==> ADC & DAC @ 12/16/20 bits
- 4) Better use of power signals ==> new kickers
- 5) Better beam diagnostics ==> bunch-by-bunch tune monitor
- 6) Adaptive control ==> automatic vertical gain control

Looking inside these points we can observe that they are strongly correlated, in particular for the first 4 items

ADC matched to amplifier range (90-85 dB)

kickers

Summary Ilya Agapov:

Controls

- Unfortunately no talk
- No apparent need for advanced modern software stacks
- High level tools established at 3G rings largely adequate for 4G rings (e.g. MML)

Commissioning simulations and automation

- High sensitivity of 4G rings leads to need of highly automated startup procedures
- No problems seen in simulations
- However, error assumptions often quite optimistic
- Procedures tested at 3G rings ESRF will show if we are missing something out

Feedbacks

- 3G feedbacks concepts adequate for 4G in terms of e-beam stabilisation
- No discussion of beam stabilisation at sample (e.g. for nano-focusing)

Commissioning of the CLIC extraction kicker at ALBA U. Iriso

- Extraction kicker for CLIC has stringent stability requirements to guarantee stability, with high homogeneity and reproducibility (variable flat-top, 100 ns rise/fall time)
- Installed at ALBA for tests, with 2 additional BPMs to measure kick angle.
- Rotated 90 degrees for aperture reasons
- Issues with uncontrolled pressure rise above 120 mA had to remove after 2 days
- Indications that synchrotron radiation impacting MACOR rings, and Loctite used to fix screws
- Re-installed after MACOR ring apertures modified and Loctite removed
- 2nd installation more successful, but limited to 140 mA.
- Indications from tunes and beam size that out-gassing / ion trapping occurring
- Decided to uninstall / reinstall every time it was tested

Commissioning of the CLIC extraction kicker at ALBA U. Iriso

- Kick angle measured using 4 BPMs; had to calibrate BPM gain roll and offsets
- Kick at 10 kV close to theoretical value
- Homogeneity 3.7E-4 close to CLIC requirement (2E-4)
- Stability / repeatability measured by scanning single bunch delay
- Found inductive adders produced significant droop. Flat top improved to 0.02% after compensation
- Transverse impedance probed via TCMI threshold and tune slope. Noisy, but consisent with Gdfidl simulations
- Also measured using kick from local orbit bumps. Again noisy, but consistent with Gdfidl.

New Instrumentation for Optical Beam Diagnostics

O. Meshkov

- Dissector electro-optical device developed at BINP for measuring longitudinal bunch profile
- Provides continuous monitoring of bunch length / phase
- Under development for new synchrotron light source and e+e- collider projects
- Low frequency sweep voltage plus fast RF sweep. Head of streak camera combined with electron multiplier tube.
- Longitudinal profile obtained by measuring electron charge scanning across narrow slit
- Achieved temporal resolution of 1.7 ps
- Can offset slit wrt centre of the bunch to study dipole/quadrupole oscillations within the bunch

New Instrumentation for Optical Beam Diagnostics

O. Meshkov

- Can offset slit wrt centre of the bunch to study dipole/quadrupole oscillations within the bunch
- Use as phase detector to monitor synchrotron oscillations, or as turn by turn profile monitor
- Some issues still with isolating individual bunches in multibunch train
- Can use two slits to separate bunches occupying odd/even RF buckets
- Developing higher sweep frequency to improve temporal resolution

Some Considerations on First Turn Dedicated Diagnostics for LE Storage Rings V. Schlott

- Number of challenges associated with LER (small apertures, small initial DA, poor match of injected bunch to SR, limited injector diagnostics, jitter/drift, ...)
- Pre-requisites for BPMs: Excellent mechanical alignment of BPM pickups, mature design of components, equal cable lengths, correct cabling, calibration in lab, online integrity check.
- Ideal: DIAGNOSTICS SUPPORT COMMISSIONING, NOT OTHER WAY AROUND
- Desirable to have well understood / tuned injector before SR commissioning
- Transfer line: monitor position, emittance, profile, loss points, Twiss parameters, bunch charge, collimation(?)
- BPMs in first-turn / turn-by-turn mode main tool for storage ring
- Sum signal gives bunch current vs location in ring (beam threading, loss points)
- Build application for first turn corrections and identification of aperture restrictions
- Limited BPM accuracy for initial first turn (alignment error, displacement of feedthroughs, cabling, resolution at low charge)
- Can expect few hundred microns offsets
- Calibrate out if sufficient turns / closed orbit available
- BPM nonlinearity significant for small apertures 1-2 mm linear region
- TBT data used for tune measurement / correction

Some Considerations on First Turn Dedicated Diagnostics for LE Storage Rings V. Schlott

- Beam loss monitors provide diversity / back-up to BPM data
- High resolution for transfer line / injection straight (cerenkov fibre loss monitor)
- Distributed monitoring for storage ring (scintillator + PMT)
- Screens can be useful in transfer line / injection straight
- Synchrotron light monitor to image beam (later: also fill pattern, streak camera, emittance monitor..).
- Current monitors in booster, transfer line, storage ring for charge transfer. Used to calibrate BPM sum signal.
- Longitudinal on-axis injection diagnostics: streak camera (dynamic range for injected / stored bunch discrimination), Longitudinal multi-bunch feedback
- Profile / emittance monitor during commissioning to verify optics / control coupling

<u>Diagnostics for First Turn Commissioning and Beam Loss</u> <u>Detection, L. Torino (ESRF)</u>

With small chambers, BPM linearity is compromised and need to use polynomial correction from Day-1

Extra-eyes are always good, so ESRF will use BLM with TBT capabilities from Day-1

Studies of Microbunching Instability at KARA, M. Brosi (KIT)

Diagnostics Challenges: how do you get??? high resolution (ps) - high sampling rate (500 MHz) - long term observations (minutes)

Use dedicated Fast THz detectors

Home-developed Fast

Electronics KAPTURE

Measurements of Energy Spread using KAPTURE and KALIPSO electronics

Novel Features in Longitudinal Instabilities in e- Storage Rings, A. Blednykh (BNL)

Different methods to diagnose Microwave Instability - diagnose Energy Spread

Using IVU spectra and SLM coincide

Energy Spread vs. Single-Bunch Current

• Both methods detect well the local minima and maxima at different I_0

Bunch length measurements with the streak camera needs further investigations

 We believe, the instability thresholds can be detected from the bunch length measurements with a streak camera resolution better than 0.5ps.