Summary Optics Design, Optics Measurement and correction

Catia Milardi, Michael Boege

M. Sjoestroem – Beam Based Calibration of BPM offsets

- static BBA using quads (individual powered, shunts, extra PS) hysteresis effects important, tune control during measurement

- K-Modulation harmonic variation of quadrupole fields (LEP, TRISTAN, ALBA (modulate corr)

• At MAXIV quads within sextupoles

problem of reproduction of quad centers for different excitation of sextupole

- \rightarrow solution calibration at zero current
- reproducibilty within a few micron some outliers
- thermal effects are affecting BBA constants

Message: Do not forget iron saturation if you windings on higher order multipoles !

- I. Martin Optics Measurement Using Fast Orbit Feedback Data
 - Streamlined LOCO procedure
 - Slow: standard procedure takes ~20 minutes

- Fast: orbit data are extracted from 1kHz data stream (8Hz modulation is well suited depends on various factors: eddy currents, magnets, PS) takes ~1 minute

good agreement for slow and fast measurement 4/5

- Python Interface for stable operation !
- NSLS-II algorithm cross check TBT, DC/AC RM measurement + LOCO
- → LOCO more precise (multi freq excitation as well)
- \rightarrow TBT faster

slow orbit feedback running to keep orbit stable

- ALBA could do Off-Energy RM measurements
- ALBA nonlinear RM measurements modulating sextupoles
- ESRF ID compensation with AC RM measurement_{5/5}

Diamond-II storage ring tuning (H. Ghasem)

Diamond II Design GOALs

Design goals for Diamond-II storage ring:

- 1) Improve quality of photon beams delivered to users:
 - Increase spectral brightness (electron beam emittance, beam energy)
 - Increase transverse coherence (electron beam matched to photons)
 - Reduced source size, line-width (emittance, energy spread)
 - Optimise spectral range (beam energy, ID parameters)
- 2) Increase number of straight sections:
 - Convert bending magnet beamlines (ID / wiggler / bespoke 3-pole wiggler)
 - Relocate existing IDs (I04.1 and I20-EDE)
 - Space for new beamlines (up to six)
 - Space for ancillary components (RF cavities, diagnostics equipment, ...)

Diamond-II Lattice

Use the ESRF cell (7BA with longitudinal gradient dipoles) – removing the mid dipole to make it a 6BA with a straight at the center.

Modified-Hybrid 6 Bend Achromat (M-H6BA)

DA with:

multipole errors + simplified errors using Gaussian distr.

M-H6BA – Commissioning simulation

Parameter	Value
Girder misal. /roll [μm /μrad]	150/150
Dipole misal. / roll within girder [µm /µrad]	50/100
Quad., Sext., Oct. misal. /roll within girder [µm /µrad]	25/100
BPM misal. /roll within girder [μm /μrad]	100/100
BPM misal. /roll within girder at BBA level [µm /µrad]	5/5
Dipole/Quad./Sext./Oct. fractional strength error	1E-3

252 HV correctors

- 0 192 of HV CORs are as additional winding in the sextupoles.
- 0 60 of HV CORs are as 80 mm separate magnets
- 252 BPMs
- □ 144 Skew quadrupole as additional windings inside the sextupoles
 - 0 96 @ dispersive places and 48 @ non dispersive places
- Commissioning simulation has been done and the results revealed that, the correction algorithm can correct the errors for 94% of the all machine ensembles.

Low and Negative Alpha Commissioning at KARA Storage Ring (A. Mochihashi) Possibilities for Modified Alpha in KARA

- Negative Alpha
 - Exepriments for Collective Phenomena
 - Head-tail instability in negative- $\! \alpha \,$ and negative-chromaticity
 - Potential-well distortion
 - Microbunching instability
 - THz CSR (in low negative α)
 - Single Particle Beam Dynamics
 - Expansion of dynamic aperture in negative chromaticity
 - Emittance modification
 - Negative alpha @ various beam energy with ramping-up
- Low Alpha
 - Single Particle Beam Dynamics
 - Top-up injection at low- α
 - Low- $\alpha~$ @various beam energy with ramping-up

Considering top-up operation, it is not straightforward to achieve enough (tolerable) injection efficiency (injection rate) in low and negative momentum compaction mode.

Analysis of Beam Loss Position & Beam Loss Rate for

Normal Positive Alpha Mode Maximum injection rate of 85% could be expected in this simulation at (normal, positive) alpha lattice.

Normal Negative Alpha Mode

How to increase the injection rate? ... **Try to adjust exit angle at septum**

Normal Negative Alpha Mode with Septum Adjust

Maximuim injection rate of 70% could be expected in this simulation at (normal, negative) alpha with septum adjustment.

Beam Commissioning at KARA in Negative Alpha

• Strategy

- Basis: "We can not cross the transition instability by keeping the beam."
- We have settled normal positive alpha as a starting point.
- By changing the quads, we have gradually change the lattice to low positive alpha by keeping the beam injection.
- After we have arrived at low positive alpha, we tried to go across a=0 by changing both the quads and the RF phase (180deg).
- When we couldn't have stored beam, we went back again to the low positive alpha and tried again.
- We have also adjusted 3-kickers, septum and beam transport line between the booster and storage ring.

