

ALICE update - use of CASTOR2@CERN

CASTOR2 Delta Review

ALICE Data Challenges - DAQ and Offline

DAQ

- Periodic, going to continuous, collaboration ALICE/IT to validate state-of-the-art HW and SW
 - Objectives
 - □ Top throughput: 3 GB/s event-building (met and exceeded last year)
 - Sustained rate: 1 GB/s to tape during 1 week (in progress)
 - Storage of TPC muon test data

Offline

- Distributed data production and analysis on the GRID
- Objectives: Test of the Offline computing model
 - Production of MC data for software and detector performance studies
 - Tests of the LCG Grid services Workload management, Storage management, network
 - Incorporation of computing centres in the ALICE Grid
 - Tests of ALICE application (ROOT, AliRoot, GEANT4, FLUKA) and Grid (AliEn) software
 - End user data analysis

ALICE Data Challenges - DAQ and Offline

- Data challenges setup details
 - DAQ ADCVII is running in the 'production LHC startup' conditions
 - ALICE PDC'06 is running with conditions very close to the setup at LHC startup
 - DAQ data challenge tests
 - Hardware, data acquisition, event building, storage
 - Networking
 - CASTOR client/server
 - Data registration and access in ALICE Offline Grid framework
 - Offline data challenge tests
 - gLite WMS, SRM, FTS
 - Site storage (elsewhere) and CASTOR2@CERN

DAQ ADC VII setup

- HW infrastructure:
 - 3 racks each with:
 - 16 TB of disk pool
 - 1 FiberChannel Switch
 - 9 hosts equipped with HostBusAdapters:
 - ADIC StorNext cluster file system allows the sharing of the disk arrays by the hosts
 - Force 10 Ethernet switch (same used for the CERN backbone)
 - All hosts have one GB Ethernet NIC used to move data
- SW infrastructure
 - LDCs, GDCs and TDS Movers run ALICE DAQ system DATE
 - TDS Movers run ALICE TDS Manager software and CASTOR client software
 - rfcp with MD5 checksum
- CASTOR2 single instance 'castoralice'
 - 28 disk servers
 - Tape units for 1GB/sec tape throughput tests

Architecture

Pending items from DAQ ADCVII

- Random freezes
- Periodic slowdowns
- Low throughput/client
- Stuck clients

Freezes

- Effect discovered in ALICE tests
 - All rfcps blocked
 - Software in CASTOR runs a periodic check-and-restart
 - Investigation in progress

Slowdowns

Almost every night around 04:00

Possibly due to CASTOR2 disk servers de-fragme

No effects on the DAQ (only on CASTOR)

- Using a different file system on the servers @ IT may help
 - impossible for the moment
- Other slowdowns during the day
 - for example between 18:00 and 22:00 (but not every day)

Low throughput and stuck clients

- ALICE uses "standard" rfcp to transfer files into CASTOR
- One single rfcp uses ~ ½ of the capacity of the outgoing NIC link, non-linear increase of transfer speed with multiple rfcps
 - Full use of the outgoing link with 9 simultaneous rfcps, still dips in the throughput
 - With/without MD5 checksum: same results
- rfcps gets stuck ~ 10 times/day (out of 90,000 transfers)
 - Timeout and trap for slow transfers added on ALICE side

Counters

- Statistics of typical 'DAQ daily transfer activity'
 - File size: slightly below 1 GB
 - ~ 1 GB/s/day (sustained)
 - ~ 90,000 files/day moved OK
 - ~ 320 transfers/day fail with various error messages
 - ~ 240 transfers/day trigger a timeout
- Undetected, any of these failures (random freezes, slowdowns, low throughput/client, stuck clients) has the power to block the challenges
 - Workarounds and protections are implemented in the Offline/DAQ transfer clients
 - Need to be fixed

Offline PDC'06 structure

- Currently 50 active computing centres on 4 continents:
 - Average of 2000 CPUs running continuously
 - MC simulaton/reconstruction jobs (~9 hours/job) produce 1.2 GB output, spread over several storage elements
 - 1 GB (simulated RAW data + ESDs) stored at at CASTOR2@CERN
- CASTOR2 single instance 'castoralice'
 - 4 tactical disk buffers (4x5.5TB) running xrootd
 - Act as a buffer between CASTOR2 and clients running at the computing centres
 - CASTOR2 stagein/stageout through a stager package running on the xrootd buffers
- FTS data transfer
 - Direct access to CASTOR2 (through SRM/gridftp)
 - Scheduled file transfer T0->T1 (five T1s involved)

Production data volume in the past 5 months

Files and rates in the past 5 months

Data transfers with FTS

- CASTOR2@CERN is the data source
- Transfers to CNAF (Italy), GridKA (Germany), CCIN2P3 (France), RAL (UK), SARA (The Netherlands)
- Goal of the exercise sustained throughput of 300MB/sec out of CERN for one week

Issues in Offline use of CASTOR2

- See issues in slides 7-9
 - File recall from CASTOR2 long waiting times for files to be staged from tape
 - Later requests are executed faster than early ones
 - Looping requests for a file recall (not properly retried in CASTOR2) can block the entire instance 'castoralice'
- Most of these issues are addressed by adding checks and retries in the Offline stager package
- In general the use of xrootd buffer 'dampens' the effects of CASTOR2 temporary problems, however this is not our long-term solution
 - We are about to exercise the new version of CASTOR2 with xrootd support (no buffers)
- FTS transfers: interplay between FTS software stack and remote storage
 - Rate out of CERN no problem to attain 300MB/sec from CASTOR
 - Stability issues we estimate that problems in CASTOR2 account only for ~7% of the failed transfers

Expert support

- Methods of problem reporting
 - E-mails to the CASTOR2 list of experts (daily and whenever a problem occurs)
 - Regular meetings with CASTOR2 experts in the framework of ADCVII and PDC'06 challenges
 - Helpdesk tickets by direct CASTOR2 users (very little use compared to the data challenges)
- ALICE is satisfied with the level of expert support from CASTOR
 - All our queries are addressed in a timely manner
 - Wherever possible, solutions are offered and implemented immediately
 - Bug reports are evaluated and taken into consideration
- We are however worried about the sustainability of the current support in a 24/7 mode of operation - the problems often appear to be non-trivial and require intervention by very few (top level) experts

Conclusions

- ALICE is using CASTOR2@CERN in a regime exactly as (DAQ) and very close (Offline) to the LHC startup 'production' mode
- The identified CASTOR2 issues reported in this presentation need to be addressed on a system level
 - Currently majority of the workarounds are built in the client software (DAQ/Offline frameworks)
 - Offline critically dependent on the integration of xrootd in CASTOR2 - progress is rather slow
 - All issues have been reported to the CASTOR2 team, however we are unable to judge at this point how quickly these will be resolved
- We are satisfied with the expert support provided by the CASTOR2 team
 - Reporting lines are clear and the feedback is quick
 - We are worried about the sustainability of present support structure