
Bulk IO Update for
PPP

Brian Bockelman

14 November 2018

Bulk IO Recap
• The bulk IO interface to a TTree (ROOT PR #2519) provides the caller with the ability to

ask for objects corresponding to an array of events (implementation: returns TBuffer from
a TBasket).

• Tradeoff is that a limited set of types can be supported by bulk IO.

• Lowest-level bulk IO interface is exported by
ROOT::Experimental::Internal::TBulkBranchRead, accessible by
TBranch::GetBulkRead() method.

• Bulk IO object exports GetEntriesSerialized(Int_t event_num,
TBuffer&); on success, buffer is filled with event data.

• Challenge: caller must handle transform from buffer to C++ objects. Simpler in
Python as this converts very naturally to a NumPy array.

• PR contains a TTreeReader-like interface, but this only works for types that work with
bulk IO. “Exercise for user” to determine this!

Q: What’s the best approach for using Bulk IO from C++?

https://github.com/root-project/root/pull/2519

A: RDataSource!
• RDataSource has type information prior to the execution of the

data frame. Hence, there’s opportunity to determine whether bulk
IO can be used.

• We can fallback to “normal IO” in the case it can’t.

• Accordingly, I went ahead and did a prototype RRootBulkDS to
determine whether RDataFrame applications could benefit from
bulk IO.

• Take-home #1: RDataFrame can benefit from bulk IO.

• Take-home #2: Not as fast as “raw” bulk IO, but there are
opportunities for improvement.

Let’s see what we can do!

https://github.com/bbockelm/root/blob/rrootbulkds/tree/dataframe/src/RRootBulkDS.cxx

Implementation Details
• See implementation for more details than I can fit in slide.

• The data source internally has a “buffer manager” object that keeps track of a
TBuffer per branch.

• When SetEntryRange is called, we invoke the bulk IO API to prepare the buffer per
branch.

• When SetEntry is called, we iterate through all the active branch buffers, advance
the pointers within the buffer, and perform the correct deserialization operation (e.g.,
byteswap).

• Limitations of prototype (not fundamental, just needs implementation):

• Assumes basket size == cluster size.

• Only a small number of types implemented.

https://github.com/bbockelm/root/blob/rrootbulkds/tree/dataframe/src/RRootBulkDS.cxx
https://github.com/bbockelm/root/blob/rrootbulkds/tree/dataframe/src/RRootBulkDS.cxx#L105
https://github.com/bbockelm/root/blob/rrootbulkds/tree/dataframe/src/RRootBulkDS.cxx#L85

Aside on test 
methodology

• All numbers presented here are based on this branch:

• https://github.com/bbockelm/root/tree/rrootbulkds

• Code samples shown here are cleaned-up / simplified from this branch.

• In particular, they can be reproduced by running build target tree/treeplayer/
datasource_rootbulk from that branch.

• For this test:

• Numbers were run on a 2.3 GHz Haswell-class Xeon processor.

• Release build with debug symbols.

• Input dataset is ~430MB: too big for the processor’s L3 cache, but small enough to stay in
page cache.

• I expect the ratios between cases to be consistent but absolute numbers to vary based on the test
setup.

https://github.com/bbockelm/root/tree/rrootbulkds

Test #1: Raw Bulk IO
• Code:

• Iterates through all the events

• Calls GetEntriesSerialized to
receive a buffer of objects.

• Deserializes the objects
inline.

• Does “something silly” with
the data.

• Bumps the index counter.

• Extremely fast: 450MHz.

 while (events) {  

 auto count = branchI->GetBulkRead().\
 GetEntriesSerialized(evt_idx, branchbuf);
 events = events > count ? (events - count) : 0;
 int *entry = (int *)branchbuf.GetCurrent();  

 for (Int_t idx=0; idx < count; idx++) {
 Int_t tmp = *(Int_t*)(&entry[idx]);
 char *tmp_ptr = (char *)&tmp;
 int val;
 frombuf(tmp_ptr, &val);
 if (val > max_bulk) {max_bulk = val;}
 }
 
 evt_idx += count;
 }

Test #2: Invoke
RDataSource Directly

• Code:

• Directly creates a RRootBulkDS.

• Performs appropriate initialization.

• Iterates through each “range” (here, each
basket is a range).

• Sets entry for each event.

• Very fast: 160MHz.

• Opportunities for speedup:

• Compiler can’t currently inline SetEntry
implementation. Appears fixable.

• This introduces a function call per event
- opportunities for a function call per
range?

 RRootBulkDS tds(treeName, fileName);
 tds.SetNSlots(1);
 auto vals = tds.GetColumnReaders<int>("myInt");
 tds.Initialise();
 auto ranges = tds.GetEntryRanges();
 Int_t max3 = 0;
 for (auto &&range : ranges) {
 tds.InitSlot(0U, range.first);
 for (int i = range.first;  
 i < range.second;  
 i++)  
 {
 tds.SetEntry(slot, i);
 auto val = **vals[slot];
 if (val > max3) {max3 = val;}
 }
 }

Test #3: RDataFrame with
RRootBulkDS

• Code:

• Creates a data source

• Creates a data frame

• Triggers computation on one branch.

• Fast: 42MHz.

• Opportunities for speedup:

• Can it effectively devirtualize the data
source?!?

• Any way to JIT larger parts of the event
loop in the loop manager?

• Potential for bad measurements:

• Is there a better way to measure event
rate minus startup costs?

std::unique_ptr<RDataSource>
 rds2(new RRootBulkDS(treeName, fileName));
RDataFrame rdf2(std::move(rds2));
auto max2 = rdf2.Max<int>("myInt");

And everything else
• Standard RDataFrame (no bulk IO) executes at 14MHz; bulk

data source sees immediate significant improvement.

• Compared to this reference, RDF + bulk DS is 3x faster;
invoking bulk DS directly is 11x faster; raw bulk IO is 32x
faster.

• Further opportunities exist: what’s the end-goal? Seems
unrealistic to expect it to be comparable with low-level
code…

• Is time better spent “making it faster” or “making it more
feature complete”?

