Bulk 10 Update for
PPP

Brian Bockelman
14 November 2018

Bulk 10 Recap

e The bulk 10 interface to a TTree (ROOT PR #2519) provides the caller with the ability to

ask for objects corresponding to an array of events (implementation: returns TBuffer from
a TBasket).

* Tradeoff is that a limited set of types can be supported by bulk IO.
e [owest-level bulk IO interface is exported by

ROOT: :Experimental: :Internal: :TBulkBranchRead, accessible by
TBranch: :GetBulkRead () method.

e Bulk 10 object exports GetEntriesSerialized (Int t event num,
TBuffers&); on success, buffer is filled with event data.

* Challenge: caller must handle transform from buffer to C++ objects. Simpler in
Python as this converts very naturally to a NumPy array.

PR contains a TTreeReader-like interface, but this only works for types that work with
bulk [0. “Exercise for user” to determine this!

Q: What’s the best approach for using Bulk 10 from C++?

https://github.com/root-project/root/pull/2519

A: RDataSource!

e RDataSource has type information prior to the execution of the

data frame. Hence, there’s opportunity to determine whether bulk
IO can be used.

e We can fallback to “normal 10” in the case it can't.

* Accordingly, | went ahead and did a prototype RRootBulkDS to
determine whether RDataFrame applications could benefit from
bulk 10.

e Take-home #1: RDataFrame can benefit from bulk IO.

 Take-home #2: Not as fast as “raw” bulk IO, but there are
opportunities for improvement.

Let’s see what we can do!

https://github.com/bbockelm/root/blob/rrootbulkds/tree/dataframe/src/RRootBulkDS.cxx

Implementation Detalls

See implementation for more details than | can fit in slide.

The data source internally has a “buffer manager” object that keeps track of a
TBuffer per branch.

When SetEntryRange is called, we invoke the bulk 10 API to prepare the buffer per
branch.

When SetEntry is called, we iterate through all the active branch buffers, advance
the pointers within the buffer, and perform the correct deserialization operation (e.g.,
byteswap).

Limitations of prototype (not fundamental, just needs implementation):
* Assumes basket size == cluster size.

e Only a small number of types implemented.

https://github.com/bbockelm/root/blob/rrootbulkds/tree/dataframe/src/RRootBulkDS.cxx
https://github.com/bbockelm/root/blob/rrootbulkds/tree/dataframe/src/RRootBulkDS.cxx#L105
https://github.com/bbockelm/root/blob/rrootbulkds/tree/dataframe/src/RRootBulkDS.cxx#L85

Aside on test
methodology

e All numbers presented here are based on this branch:

* https://qgithub.com/bbockelm/root/tree/rrootbulkds

e Code samples shown here are cleaned-up / simplified from this branch.

e In particular, they can be reproduced by running build target tree/treeplayer/
datasource rootbulk from that branch.

* For this test:
 Numbers were run on a 2.3 GHz Haswell-class Xeon processor.

* Release build with debug symbols.

e Input dataset is ~430MB: too big for the processor’s L3 cache, but small enough to stay in
page cache.

e | expect the ratios between cases to be consistent but absolute numbers to vary based on the test
setup.

https://github.com/bbockelm/root/tree/rrootbulkds

Test #1: Raw Bulk 1O

e Code:

while (events) {

* [terates through all the events
auto count = branchI->GetBulkRead() .\

GetEntriesSerialized(evt idx, branchbuf) ;

e (Calls GetEntriesSerialized to events = events > count ? (events - count) : 0;

receive a buffer Of objects int *entry = (int *)branchbuf.GetCurrent()

for (Int_t idx=0; idx < count; idx++) {
R . Int t tmp = *(Int t*) (&¢entry[idx]);
* Deserializes the objects char *tmi _ptr = (char *>&tm§,.

Inline. int val;
frombuf (tmp ptr, &val);
if (val > max bulk) {max bulk = val;}

 Does “something silly” with }
the data.

evt_idx += count;

* Bumps the index counter.

e Extremely fast: 450MHz.

Test #2: Invoke
RDataSource Directly

e Code:

RRootBulkDS tds (treeName, fileName) ;
tds.SetNSlots (1) ;
auto vals = tds.GetColumnReaders<int>("myInt") ;

* Directly creates a RRootBulkDS.

* Performs appropriate initialization. tds.Initialise() ;
auto ranges = tds.GetEntryRanges() ;

* |terates through each “range” (here, each Int t max3 = 0;

basket is a range). for (auto &&range : ranges) {

tds.InitSlot(0U, range.first);
e Sets entry for each event. for (int 1 = range.first;
1 < range.second;
: it++)
* \ery fast: 160MHz.

tds.SetEntry(slot, i) ;
auto val = **vals[slot];
if (val > max3) {max3 = val;}

e Opportunities for speedup:

* Compiler can’t currently inline SetEntry }
implementation. Appears fixable. }

* This introduces a function call per event
- opportunities for a function call per
range?

Test #3: RDataFrame with
RRootBulkDS

Code:
e Creates a data source
e Creates a data frame

* Triggers computation on one branch.

Fast: 42MHz. std: :unique ptr<RDataSource>
rds2 (new RRootBulkDS (treeName, fileName)) ;
Opportunities for speedup: RDataFrame rdf2 (std: :move (rds2)) ;

auto max2 = rdf2.Max<int>("myInt") ;

e Can it effectively devirtualize the data
source?!?

e Any way to JIT larger parts of the event
loop in the loop manager?

Potential for bad measurements:

* |s there a better way to measure event
rate minus startup costs?

And everything else

e Standard RDataFrame (no bulk IO) executes at 14MHz; bulk
data source sees immediate significant improvement.

e Compared to this reference, RDF + bulk DS is 3x faster;
invoking bulk DS directly is 11x faster; raw bulk 10 is 32x
faster.

* Further opportunities exist: what’s the end-goal? Seems
unrealistic to expect it to be comparable with low-level
code...

e |s time better spent “making it faster” or “making it more
feature complete”?

