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Motivation

LHCb pentaquarks

Resonances: 
bumps in cross sections ⇔ 
poles in scattering amplitudes
(complex momentum plane) 

Pelaez,  Phys. Rept. 658 (2016) 1

Aaij, PRL 112 (2019) 222001
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𝜎/𝑓�(500): resonance in 𝜋𝜋 scattering

PDG 2012: “𝑓�(500)”
�𝑠 ~ (400...550) � i (200...350) MeV

PDG 2010: “𝑓�(600)”
�𝑠 ~ (400...1200) � i (250...500) MeV
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Motivation

Resonances:
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Motivation

Lattice QCD:

Infinite volume:  
Bound states, resonances, 
branch cuts

Finite volume: 
bound states & scattering states
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energy levels
in finite box

vary volume,
Luescher method
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Motivation

In terms of quarks and gluons?

Resonances by meson-baryon interactions: 

Bound states:
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Both bound states and resonances
must be generated from quark-gluon structure!

Analogue for 𝜌 → 𝜋𝜋:
Williams,  1804.11161 [hep-ph]
Miramontes, Sanchis-Alepuz, 
1906.06227 [hep-ph]

𝜋

𝑁
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Motivation

These are still
bound states

Tetraquarks are resonances:
internal poles emerge dynamically!

Baryon excitation spectrum:

𝜋

𝜋𝜎, 𝜅, 𝑎�/𝑓�:
𝑋(3872):

GE, Fischer, Heupel,  PLB 753 (2016)

Wallbott, GE, Fischer,  1905.02615 [hep-ph]
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Review:  GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, 
                  PPNP 91 (2016), 1606.09602
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Questions

Instead of extracting resonance information from spacelike data (            ),
can we calculate them directly in complex plane?

From four-dimensional, Lorentz-invariant integral equations?

On the second Riemann sheet?

Related: Euclidean vs. Minkowski space – what’s the deal?

0>2P
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Im

2P

2P
Bound
states

Threshold

Resonances

2m4−=2P
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Euclidean vs. Minkowski

“We live in Minkowski space and not Euclidean space!”

Choice of metric cannot affect physics:

Spacelike (“Euclidean”) vs. timelike (“Minkowski”)?

It’s about the integration path ... although

What about               ?

What if phase space is 
multi-dimensional?

(if defined 
 correctly)

“naive 
Euclidean”

“naive 
Minkowski”

“We need XY in Minkowski space”
“We calculate XY directly in Minkowski space”
“The Euclidean calculation is wrong” 
“ M = f(M,E),  E = g(M,E) ”

) )
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0P
=M

µP P i=E
µ
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Im
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Bound
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Threshold

Resonances
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E = M
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M’
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Textbook example

Do 𝑘� integration first, pick up  
𝑘-dependent residues, integrate over 𝑘 
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Now exchange 𝑑�𝑘 ↔ 𝑑𝑘� integration:

has cuts instead of poles 
→ avoid cuts in 𝑘� integration
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Textbook example
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Two poles

) )

∫ 1
k4d

2m++
2k

1

2m+−
2k

Consider two-point function (current correlator, self energy, vacuum polarization, ...)
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FIG. 3: Singularity structure in the complex
√
t plane.

the loop diagram in Fig. 2:

I(t) =
∫

d4k
1

k2+ +m2

1

k2− +m2
. (3)

The total momentum is Pµ, the internal momenta are
kµ± = kµ±Pµ/2, and we defined1 the dimensionless vari-
able t = P 2/(4m2). The integral is Lorentz invariant and
thus only depends on t. This is the simplest example of
a two-point correlation function like a self-energy or vac-
uum polarization, which in principle can produce the sin-
gularity structure shown in Fig. 2. Bound states appear
on the negative real axis of t and resonances above the
threshold t < −1 on higher Riemann sheets. The pertur-
bative integral (3) can at best produce a two-particle cut
but if the internal propagators and vertices were dressed
and non-perturbative, the integral could also generate
bound-state and resonance poles.

Because I(t) = I∗(t∗) is an analytic function, it is
sufficient to consider the upper half plane in t only: The
real part is symmetric around the real axis and the imag-
inary part is antisymmetric. It is then more convenient
to plot the function in the complex

√
t plane, which con-

fines it to the upper right quadrant (Fig. 3). In this
case the bound states appear on the imaginary axis be-
low threshold (Im

√
t < 1), the cut starts at the threshold

and the resonances lie above threshold on a higher Rie-
mann sheet. In this way one can directly read off the real
and imaginary parts of the masses Mi, which appear at
Im

√
t = ReMi/(2m).

Suppose we want to calculate I(t) for some t ∈ C.
Fig. 4 shows the resulting cuts in the complex plane of
r4 = k4/m. There are four vertical cuts centered around
the external point ±

√
t. Since we divided out the mass,

1 Note that t is related to the usual definition of the Mandelstam
variable s̃ through s̃ = −4m2t. We adapted our notation to the
Compton scattering kinematics in Sec. VC; in the following we
therefore refer to the resonant channel as the t channel and to
the crossed channels as s and u channels.

Re Re 

1

Im 

E

Im 

E

E

’

FIG. 4: Cuts in the complex r4 plane for an integral with
two poles. In the left panel Im

√
t < 1 and thus a straight

integration path is sufficient; in the right panel Im
√
t > 1,

which requires a contour deformation.

the vertical distance between
√
t and the onset of the cuts

is equal to 1. As before, the Euclidean integration path
proceeds from left to right.

If Im
√
t > 1, however, the cuts cross the real axis and

the straight Euclidean path (we denote it by E’) would
cross the cuts. Hence we must deform the contour to
avoid the cuts: The correct Euclidean path is E. As a
consequence, E = E’ only below the threshold Im

√
t < 1,

i.e., in the colored region in Fig. 3, where a naive Eu-
clidean integration is sufficient and gives the correct re-
sult. Above threshold, one has to deform the contour to
obtain the correct value of the integral. The situation can
be generalized to unequal masses or complex propagator
poles, but the principle is the same: a straight Euclidean
integration path is only valid in a limited domain of com-
plex t.

What would be the corresponding Minkowski path?
Apparently it cannot proceed along the vertical axis as
in Fig. 1: It does not matter whether we start slightly
on the right and end up slightly on the left because there
are no singularities on the imaginary axis. In fact, the iε
prescription entails

∞(1+iε)∫

−∞(1+iε)

dk0 ⇔
∞(i−ε)∫

−∞(i−ε)

dr4 , (4)

since it originates from the need to isolate the interacting
vacuum |Ω〉 in a correlation function,

∞∑

n=0

e−iEnT |n〉〈n|Ω〉 T→∞(1−iε)−−−−−−→ e−iE0T |0〉〈0|Ω〉 ,

and thereby remove the higher energy contributions En

of the free n−particle states |n〉. The integration path
between T = ±∞(1 − iε) in the action of the quantum
field theory thus corresponds to k0 → ±∞(1 + iε) and
r4 → ±∞ (i− ε). Therefore, the proper Minkowski path
is the diagonal line from bottom right to top left, which
must also be deformed to avoid the cuts, cf. Fig. 5.

3

Bound
states

Resonances

Im       = 1 

Re

Im

FIG. 3: Singularity structure in the complex
√
t plane.

the loop diagram in Fig. 2:

I(t) =
∫

d4k
1

k2+ +m2

1

k2− +m2
. (3)

The total momentum is Pµ, the internal momenta are
kµ± = kµ±Pµ/2, and we defined1 the dimensionless vari-
able t = P 2/(4m2). The integral is Lorentz invariant and
thus only depends on t. This is the simplest example of
a two-point correlation function like a self-energy or vac-
uum polarization, which in principle can produce the sin-
gularity structure shown in Fig. 2. Bound states appear
on the negative real axis of t and resonances above the
threshold t < −1 on higher Riemann sheets. The pertur-
bative integral (3) can at best produce a two-particle cut
but if the internal propagators and vertices were dressed
and non-perturbative, the integral could also generate
bound-state and resonance poles.

Because I(t) = I∗(t∗) is an analytic function, it is
sufficient to consider the upper half plane in t only: The
real part is symmetric around the real axis and the imag-
inary part is antisymmetric. It is then more convenient
to plot the function in the complex

√
t plane, which con-

fines it to the upper right quadrant (Fig. 3). In this
case the bound states appear on the imaginary axis be-
low threshold (Im

√
t < 1), the cut starts at the threshold

and the resonances lie above threshold on a higher Rie-
mann sheet. In this way one can directly read off the real
and imaginary parts of the masses Mi, which appear at
Im

√
t = ReMi/(2m).

Suppose we want to calculate I(t) for some t ∈ C.
Fig. 4 shows the resulting cuts in the complex plane of
r4 = k4/m. There are four vertical cuts centered around
the external point ±

√
t. Since we divided out the mass,

1 Note that t is related to the usual definition of the Mandelstam
variable s̃ through s̃ = −4m2t. We adapted our notation to the
Compton scattering kinematics in Sec. VC; in the following we
therefore refer to the resonant channel as the t channel and to
the crossed channels as s and u channels.

Re Re 

1

Im 

E

Im 

E

E

’

FIG. 4: Cuts in the complex r4 plane for an integral with
two poles. In the left panel Im

√
t < 1 and thus a straight

integration path is sufficient; in the right panel Im
√
t > 1,

which requires a contour deformation.

the vertical distance between
√
t and the onset of the cuts

is equal to 1. As before, the Euclidean integration path
proceeds from left to right.

If Im
√
t > 1, however, the cuts cross the real axis and

the straight Euclidean path (we denote it by E’) would
cross the cuts. Hence we must deform the contour to
avoid the cuts: The correct Euclidean path is E. As a
consequence, E = E’ only below the threshold Im

√
t < 1,

i.e., in the colored region in Fig. 3, where a naive Eu-
clidean integration is sufficient and gives the correct re-
sult. Above threshold, one has to deform the contour to
obtain the correct value of the integral. The situation can
be generalized to unequal masses or complex propagator
poles, but the principle is the same: a straight Euclidean
integration path is only valid in a limited domain of com-
plex t.

What would be the corresponding Minkowski path?
Apparently it cannot proceed along the vertical axis as
in Fig. 1: It does not matter whether we start slightly
on the right and end up slightly on the left because there
are no singularities on the imaginary axis. In fact, the iε
prescription entails

∞(1+iε)∫

−∞(1+iε)

dk0 ⇔
∞(i−ε)∫

−∞(i−ε)

dr4 , (4)

since it originates from the need to isolate the interacting
vacuum |Ω〉 in a correlation function,

∞∑

n=0

e−iEnT |n〉〈n|Ω〉 T→∞(1−iε)−−−−−−→ e−iE0T |0〉〈0|Ω〉 ,

and thereby remove the higher energy contributions En

of the free n−particle states |n〉. The integration path
between T = ±∞(1 − iε) in the action of the quantum
field theory thus corresponds to k0 → ±∞(1 + iε) and
r4 → ±∞ (i− ε). Therefore, the proper Minkowski path
is the diagonal line from bottom right to top left, which
must also be deformed to avoid the cuts, cf. Fig. 5.
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uum polarization, which in principle can produce the sin-
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obtain the correct value of the integral. The situation can
be generalized to unequal masses or complex propagator
poles, but the principle is the same: a straight Euclidean
integration path is only valid in a limited domain of com-
plex t.

What would be the corresponding Minkowski path?
Apparently it cannot proceed along the vertical axis as
in Fig. 1: It does not matter whether we start slightly
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are no singularities on the imaginary axis. In fact, the iε
prescription entails

∞(1+iε)∫

−∞(1+iε)

dk0 ⇔
∞(i−ε)∫

−∞(i−ε)

dr4 , (4)

since it originates from the need to isolate the interacting
vacuum |Ω〉 in a correlation function,

∞∑

n=0

e−iEnT |n〉〈n|Ω〉 T→∞(1−iε)−−−−−−→ e−iE0T |0〉〈0|Ω〉 ,

and thereby remove the higher energy contributions En
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the straight Euclidean path (we denote it by E’) would
cross the cuts. Hence we must deform the contour to
avoid the cuts: The correct Euclidean path is E. As a
consequence, E = E’ only below the threshold Im

√
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i.e., in the colored region in Fig. 3, where a naive Eu-
clidean integration is sufficient and gives the correct re-
sult. Above threshold, one has to deform the contour to
obtain the correct value of the integral. The situation can
be generalized to unequal masses or complex propagator
poles, but the principle is the same: a straight Euclidean
integration path is only valid in a limited domain of com-
plex t.

What would be the corresponding Minkowski path?
Apparently it cannot proceed along the vertical axis as
in Fig. 1: It does not matter whether we start slightly
on the right and end up slightly on the left because there
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prescription entails
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e−iEnT |n〉〈n|Ω〉 T→∞(1−iε)−−−−−−→ e−iE0T |0〉〈0|Ω〉 ,

and thereby remove the higher energy contributions En

of the free n−particle states |n〉. The integration path
between T = ±∞(1 − iε) in the action of the quantum
field theory thus corresponds to k0 → ±∞(1 + iε) and
r4 → ±∞ (i− ε). Therefore, the proper Minkowski path
is the diagonal line from bottom right to top left, which
must also be deformed to avoid the cuts, cf. Fig. 5.
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Two poles

) )

∫ 1
k4d

2m++
2k

1

2m+−
2k

Consider two-point function (current correlator, self energy, vacuum polarization, ...)

𝑃𝑃

√𝑡

Re       = 0√𝑡

M

Re 𝑟�

Im 𝑟�

. . .4dr

)ε−i(−∞

)ε−i(∞∫
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So:

“We need XY in Minkowski space”
“We calculate XY directly in Minkowski space”
                             ... in the full kinematical domain
                             ... above threshold                             
                             ... using residue calculus

The naive Euclidean calculation is would be wrong 
in certain kinematical regions (if anyone actually did that)

) )

Re

Im

Bound
states

Resonances

Im       = 1 √𝑡

√𝑡

√𝑡

Suggestions for better wording:

...  close contours analytically, pick up residues

...  avoid cuts by numerical contour deformation
−∞

∞

4dk k3d
∫∫ −∞

∞

4dkk3d
∫ ∫

E = M
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So:

“We need XY in Minkowski space”
“We calculate XY directly in Minkowski space”
                             ... in the full kinematical domain
                             ... above threshold                             
                             ... using residue calculus

The naive Euclidean calculation is would be wrong 
in certain kinematical regions (if anyone actually did that)

) )

Suggestions for better wording:

...  close contours analytically, pick up residues

...  avoid cuts by numerical contour deformation
−∞

∞

4dk k3d
∫∫ −∞

∞

4dkk3d
∫ ∫

Quark propagator
with contour
deformation

... and without

E = M
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Contour deformations

) )

Fermion propagator in QED3
Maris, PRD 52 (1995)

Quark propagator in QCD
GE, PhD thesis (2009)

Gluon and ghost propagators in QCD
Strauss, Fischer, Kellermann,  PRL 109 (2012)

Glueball correlator in YM
Windisch, Alkofer, Haase, Liebmann,  CPC 184 (2013),
Windisch, Huber, Alkofer,  PRD 87 (2013)

Finite-T spectral functions from FRG
Pawlowski, Strodtho�, Wink,  PRD 98 (2018)

Rho-meson decay
Williams, 1804.11161 

Rare pion decay   𝜋�  → 𝑒⁺𝑒⁻  
Weil, GE, Fischer, Williams,  PRD 96 (2017)

Quark-photon vertex
Miramontes, Sanchis-Alepuz, 1906.06227

2-point functions: 3-point functions:
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Scalar system

) )

2 parameters:  

Dressed propagators do not change much:

Tree-level propagators ok –
at least for small coupling
 

Ahlig, Alkofer, Ann. Phys. 275 (1999) 

2)πm(4

2g
=c

m

µ
=β,𝑚
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Bound states & resonances

) )

Homogeneous BSE: 

Inhomogeneous BSE: 

Scattering equation:

BS amplitude:
eigenvalue spectrum of 𝐾𝐺�
for given 𝐽�� channel

→  

Vertex: bound-state 
and resonance poles
for given 𝐽�� channel

→  

Scattering amplitude,
all singularities

→  

𝜓 = 𝐾𝐺� 𝜓

𝛤 = 𝛤� + 𝐾𝐺� 𝛤

𝑇 = 𝐾 + 𝐾𝐺� 𝑇

𝛤 = 
1 − 𝐾𝐺�

𝛤�

𝑇 = 
1 − 𝐾𝐺�

𝐾

Wick 1954,
Cutkosky 1954,
Nakanishi 1969, ...

= + + +

=

= +
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Bound states & resonances

) )

Homogeneous BSE: 

𝜓(𝑋, 𝑍, 𝑡) = 𝑐  �𝑑𝑥 �𝑑𝑧  𝐾(𝑋, 𝑥, 𝑍, 𝑧, 𝑡)  𝐺�(𝑥, 𝑧, 𝑡)  𝜓(𝑥, 𝑧, 𝑡)

⇒     𝜓(𝑡) = 𝑐 𝐾𝐺�(𝑡) 𝜓(𝑡)

⇒ =  𝑐 
!

𝜆(𝑡)
1

=

= 𝑀/(2𝑚)

𝜆
1

0.0
0

4
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12

0.2 0.4 0.6 0.8 1.0

𝑐

Re

Im

Bound
states

Resonances

Im       = 1 √𝑡

√𝑡

√𝑡
Im √𝑡
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Bound states & resonances

) )

Homogeneous BSE: 
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Contour deformation

) )

Homogeneous BSE: 

All cuts in yellow area

Can cover entire complex 𝑡 plane!

Find path in 𝑥 that avoids 𝐺� cuts 

          and              must never decrease 

Paths in 𝑋 and 𝑥 must match →  
each point on path creates another cut from 𝐾  

→  cuts from 𝐺� in complex 𝑥 plane for given 𝑡
 

→  cuts from 𝐾  in complex 𝑥 plane for given 𝑋 

𝜓(𝑋, 𝑍, 𝑡) = �𝑑𝑥 �𝑑𝑧  𝐾(𝑋, 𝑥, 𝑍, 𝑧)  𝐺�(𝑥, 𝑧, 𝑡)  𝜓(𝑥, 𝑧, 𝑡)
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Contour deformation
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Contour deformation

) )

Homogeneous BSE: 

All cuts in yellow area

Can cover entire complex 𝑡 plane!

CD

Find path in 𝑥 that avoids 𝐺� cuts 

          and              must never decrease 

Paths in 𝑋 and 𝑥 must match →  
each point on path creates another cut from 𝐾  

→  cuts from 𝐺� in complex 𝑥 plane for given 𝑡
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Contour deformation

) )

Can still cover parts of complex 𝑡 plane:

For onshell scattering amplitude more complicated:
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BSE Eigenvalues

) )
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BSE Eigenvalues

) )

still valid for 
complex poles:

can detect
resonances from 
homogeneous BSE
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How to access 2nd sheet?

) )

Resonances via Padé /
Schlessinger point method /
Continued fraction

1st sheet

2nd sheet

RVP: 

Schlessinger, Phys. Rev. 167 (1968)
Tripolt, Haritan, Wambach, Moiseyev,  PLB 774 (2017)

𝑓(𝑧) = 
𝑐�

𝑐� (𝑧−𝑧�)
1 + 

𝑐� (𝑧−𝑧�)
1 + 

𝑐� (𝑧−𝑧�)
1 + . . .

Re

Im

1st

1st

2nd

2nd

√𝑡

√𝑡

Re

Im f

√𝑡
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Pole trajectories

) )

Pole trajectories:
Zeros of Im 1/𝜆 

But RVP sensitive to # input points,
also doesn’t handle cuts well

No resonances above threshold

Virtual bound states?

Vertex from inhomogeneous BSE:
only threshold cusp, no resonance bump

Hanhart, Pelaez, Rios, PLB 739 (2014), 
Pelaez, Phys. Rept. 658 (2016)
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Pole trajectories
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Pole trajectories:
Zeros of Im 1/𝜆 

But RVP sensitive to # input points,
also doesn’t handle cuts well

No resonances above threshold

Virtual bound states?

Vertex from inhomogeneous BSE:
only threshold cusp, no resonance bump

Hanhart, Pelaez, Rios, PLB 739 (2014), 
Pelaez, Phys. Rept. 658 (2016)
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Pole trajectories

) )

Pole trajectories:
Zeros of Im 1/𝜆 

But RVP sensitive to # input points,
also doesn’t handle cuts well

No resonances above threshold

Virtual bound states?

Vertex from inhomogeneous BSE:
only threshold cusp, no resonance bump

Hanhart, Pelaez, Rios, PLB 739 (2014), 
Pelaez, Phys. Rept. 658 (2016)
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Pole trajectories

) )

Pole trajectories:
Zeros of Im 1/𝜆 

But RVP sensitive to # input points,
also doesn’t handle cuts well

No resonances above threshold

Virtual bound states?

Vertex from inhomogeneous BSE:
only threshold cusp, no resonance bump

Hanhart, Pelaez, Rios, PLB 739 (2014), 
Pelaez, Phys. Rept. 658 (2016)
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Pole trajectories

) )

Pole trajectories:
Zeros of Im 1/𝜆 

But RVP sensitive to # input points,
also doesn’t handle cuts well

No resonances above threshold

Virtual bound states?

Vertex from inhomogeneous BSE:
only threshold cusp, no resonance bump

Hanhart, Pelaez, Rios, PLB 739 (2014), 
Pelaez, Phys. Rept. 658 (2016)
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Pole trajectories

) )

Pole trajectories:
Zeros of Im 1/𝜆 

But RVP sensitive to # input points,
also doesn’t handle cuts well

No resonances above threshold

Virtual bound states?

Vertex from inhomogeneous BSE:
only threshold cusp, no resonance bump

Hanhart, Pelaez, Rios, PLB 739 (2014), 
Pelaez, Phys. Rept. 658 (2016)
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Pole trajectories

) )

Pole trajectories:
Zeros of Im 1/𝜆 

But RVP sensitive to # input points,
also doesn’t handle cuts well

No resonances above threshold

Virtual bound states?

Vertex from inhomogeneous BSE:
only threshold cusp, no resonance bump

Hanhart, Pelaez, Rios, PLB 739 (2014), 
Pelaez, Phys. Rept. 658 (2016)
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Pole trajectories

) )

Pole trajectories:
Zeros of Im 1/𝜆 

But RVP sensitive to # input points,
also doesn’t handle cuts well

No resonances above threshold

Virtual bound states?

Vertex from inhomogeneous BSE:
only threshold cusp, no resonance bump

Hanhart, Pelaez, Rios, PLB 739 (2014), 
Pelaez, Phys. Rept. 658 (2016)
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Pole trajectories

) )

Pole trajectories:
Zeros of Im 1/𝜆 

But RVP sensitive to # input points,
also doesn’t handle cuts well

No resonances above threshold

Virtual bound states?

Vertex from inhomogeneous BSE:
only threshold cusp, no resonance bump

Hanhart, Pelaez, Rios, PLB 739 (2014), 
Pelaez, Phys. Rept. 658 (2016)
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Pole trajectories

) )

Pole trajectories:
Zeros of Im 1/𝜆 

But RVP sensitive to # input points,
also doesn’t handle cuts well

No resonances above threshold

Virtual bound states?

Vertex from inhomogeneous BSE:
only threshold cusp, no resonance bump

Glöckle, “The QM Few-Body Problem”, 1983
Hanhart, Pelaez, Rios, PLB 739 (2014)
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Poles on 2nd sheet

) )

No cut in            plane 

→ can analytically continue
    eigenvalues of homogeneous BSE!

Hanhart, Pelaez, Rios, PLB 739 (2014)
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Poles on 2nd sheet

) )

RVP accurately reproduces
bound-state pole on 1st sheet

For small coupling, RVP
suggests virtual state
on 2nd sheed Bound
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Poles on 2nd sheet

) )

RVP accurately reproduces
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Poles on 2nd sheet

) )

RVP accurately reproduces
bound-state pole on 1st sheet

For small couplings, RVP
points to virtual states
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Two-body unitarity

) )

Follows from scattering equation:

𝑇 = 𝐾 + 𝐾𝐺� 𝑇 ⇒   𝑇⁻� = 𝐾⁻� − 𝐺�
⇒   𝑇₊⁻� − 𝑇₋⁻�  =  (𝐾₊⁻� − 𝐾₋⁻�)  − (𝐺�₊ − 𝐺�₋) 
⇒   𝑇₊ − 𝑇₋  =   𝑇₊ (𝐺�₊ − 𝐺�₋) 𝑇₋  +  ( . . . )  

With partial-wave decomposition:

→  But this requires scattering amplitude

𝑓�(𝑡)��  =  
𝑓�(𝑡)�

1 − 2𝑖 𝜏(𝑡) 𝑓�(𝑡)�

= +
+

+

Gribov Lectures 
on Theoretical Physics,
Cambridge 2008

e.g.: 

If  𝑇   =  𝑇( 𝑡 � 𝑖𝜖 ):�

1st

1st

2nd

2nd

Re

Im f

√𝑡
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Scattering amplitude

) )

Bound states, resonances and t-channel cuts
at fixed 𝑡 →  determined by scattering equation 

Exchange-particle poles from 𝐾 at fixed 
𝑠 = 𝜇� and 𝑢 = 𝜇�   (no poles in 𝑇 − 𝐾)

Perturbative cuts for 
𝑠 � 4𝜇� and 𝑢 � 4𝜇�

Depends on two variables:  𝑡  and crossing variable  𝜆 =  
4𝑚�   
𝑠−𝑢

= + + . . .

+. . . . . .++

= + + +

s channel

t channel

u channel

𝜆

𝑡

𝑡 = 0

𝑠 =
 0

𝑢 =
 0

Gernot Eichmann (IST Lisboa) Sep 12, 2019 25 / 30



Scattering amplitude
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Scattering amplitude

) )

Bound states, resonances and t-channel cuts
at fixed 𝑡 →  determined by scattering equation 

Exchange-particle poles from 𝐾 at fixed 
𝑠 = 𝜇� and 𝑢 = 𝜇�   (no poles in 𝑇 − 𝐾)

Perturbative cuts for 
𝑠 � 4𝜇� and 𝑢 � 4𝜇�

Depends on two variables:  𝑡  and crossing variable  𝜆 =  
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Scattering amplitude

) )

Depends on two variables:  𝑡  and crossing variable  𝜆 =  
4𝑚�   
𝑠−𝑢

To obtain onshell scattering amplitude,
must first solve half-offshell scattering equation

Kinematics same as in Compton scattering

= + + +

GE, Ramalho,  PRD 98 (2018)

onshell
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 =
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Scattering amplitude

) )

Amplitude on 2nd sheet:

𝑓�(𝑡)��  =  
𝑓�(𝑡)�

1 − 2𝑖 𝜏(𝑡) 𝑓�(𝑡)�
𝑇(𝑡, 𝜆)  =  � (2𝑙+1) 𝑓�(𝑡) 𝑃�(cos 𝛩)  ≈  𝑓�(𝑡)      

Partial-wave expansion:

𝑙 = 0

∞

Re √𝑡Re √𝑡

Re 𝑓�(𝑡) Im 𝑓�(𝑡)

𝑐 = 1

Im √𝑡 Im √𝑡

1st sheet

2nd sheet
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Scattering amplitude
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Scattering amplitude

) )

Amplitude on 2nd sheet:
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Scattering amplitude
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Scattering amplitude

) )

Amplitude on 2nd sheet:

𝑓�(𝑡)��  =  
𝑓�(𝑡)�

1 − 2𝑖 𝜏(𝑡) 𝑓�(𝑡)�
𝑇(𝑡, 𝜆)  =  � (2𝑙+1) 𝑓�(𝑡) 𝑃�(cos 𝛩)  ≈  𝑓�(𝑡)      

Partial-wave expansion:

𝑙 = 0
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Re 𝑓�(𝑡) Im 𝑓�(𝑡)

𝑐 = 5

Im √𝑡 Im √𝑡

1st sheet
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Scattering amplitude

) )
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Scattering amplitude

) )
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Scattering amplitude

) )

Amplitude on 2nd sheet:
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Pole trajectories

) )

Scalar model doesn’t have 
resonances but only 
virtual bound states 

Need full scattering equation
to find them (2-body unitarity)

For nearby resonances,
(in-)homogeneous BSE + RVP 
probably sufficient

Re

Im

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5
1st sheet2nd sheet

virtual
state
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3
4 7
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bound 
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tachyon
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Pole trajectories

) )

Analogous for other values of 𝛽
(i.e., exchange-particle masses)

Inside each band a state is bound

At fixed 𝛽, when increasing coupling:
virtual states → bound states → tachyons 

Here for 𝛽 = 2,  𝑐 = 12: 

Ground state has become tachyonic,
1st excited state is not yet bound

Large structure is exchange particle pole 
at fixed 𝑠 (or 𝑢), cf. Mandelstam plane
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Benchmarks

Binding energies Phase shifts

� 𝑒             − 1 �𝑓�(𝑡)  =  
2𝑖 𝜏(𝑡)

2𝑖 𝛿�(𝑡)15.= 0, β= 1c

Kusaka, Simpson, Williams,  PRD 56 (1997)
Karmanov, Carbonell,  EPJ A 28 (2006)

Frederico, Salmè, Viviani,  PRD 89 (2014)

this work [1, 2]

[1, 2]

[3]

[3]
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Summary & Outlook

) )

Contour deformations: 
Toolbox for treating resonances with integral equations

QCD with functional methods: must still implement resonance mechanism,
tetraquarks are good starting point (it’s automatic)

Can be taken over without changes to 𝑁𝑁,  𝑁𝜋 scattering, etc. → amplitude analyses 

Scalar system: template for resonances in Higgs sector.
Model considered here doesn’t have resonances but virtual bound states 

Homogeneous BSE is good enough to extract pole positions on 2nd sheet 
(nearby resonances, otherwise at least ballpark estimates)

Generally applicable for circumventing singularities (e.g. from quark propagator)
→ highly excited states, timelike FFs, FFs at large 𝑄�, PDFs, GPDs, TMDs, . . . 
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Backup slides

Tetraquark notes

Gernot Eichmann

Defining the momenta as in your notes, we have the
two momentum multiplets

SM =
4∑

i=1
pi = P , T +

M = 1
2




1√
3 (p + q + k)

1√
6 (p + q − 2k)

1√
2 (q − p)


 . (1)

Apart from the trivial singlet P 2, the resulting nine
Lorentz invariants are

S0 = T +
M · T +

M = 1
4 (p2 + q2 + k2) ,

D0 = T +
M ∗ T +

M = 1
4S0

[ √
3 (q2 − p2)

p2 + q2 − 2k2

]
,

T0 = T +
M ∨ T +

M = 1
4S0




2 (ω1 + ω2 + ω3)√
2 (ω1 + ω2 − 2ω3)√

6 (ω2 − ω1)


 , (2)

T1 = T +
M · SM = 1

4S0




2 (η1 + η2 + η3)√
2 (η1 + η2 − 2η3)√

6 (η2 − η1)


 ,

with

ω1 = q · k , ω2 = p · k , ω3 = p · q (3)

and

η1 = p · P̂ , η2 = q · P̂ , η3 = k · P̂ . (4)

We can express p2, q2, k2 in terms of the doublet vari-
ables:

p2 = 2
3 S0(2 + s −

√
3 a) ,

q2 = 2
3 S0(2 + s −

√
3 a) ,

k2 = 4
3 S0(1 − s) .

(5)

Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
(

k ± P

2

)2
= k2 − M2

4 ± iMη3

= k2 − M2

4 ± iM
√

k2 z3 ,

(6)

where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
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k ± P

2
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(6)

where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
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π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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Scattering amplitude

) )

Depends on two variables:  𝑡  and crossing variable  𝜆 =  
4𝑚�   
𝑠−𝑢

𝜆 dependence “boring”: exchange poles and cuts,
𝑇 − 𝐾 almost flat (cuts only)

Also 𝑇(𝜆) is flat if exchange poles far away ⇒
partial-wave expansion converges rapidly 

Extract phase shifts, make Argand plots, etc.

𝑇(𝑡, 𝜆)  =  � (2𝑙+1) 𝑓�(𝑡) 𝑃�(cos 𝛩)  ≈  𝑓�(𝑡)     
∞

𝑙 = 0

� 𝑒             − 1 �𝑓�(𝑡)  =  
2𝑖 𝜏(𝑡)

2𝑖 𝛿�(𝑡)1

Bound states

Resonances
𝑡 = −1

s channel

t channel

u channel

𝜆

𝑡

𝑡 = 0

𝑠 =
 0

𝑠 =
 𝜇

�

𝑢 =
 0𝑢 =

 𝜇�
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Complex eigenvalues?

Excited states: some EVs 
are complex conjugate? 

Typical for unequal-mass systems,
already in Wick-Cutkosky model 
Wick 1954, Cutkosky 1954

Ahlig, Alkofer,  Ann. Phys. 275 (1999)
Connection with “anomalous” states?

)M(K )M(G )M(iφ )M(iφ

= iλ

K and G are Hermitian (even for 
unequal masses!) but KG is not

If               and             : 
Cholesky decomposition 

†G=G 0G >

L†L=G

iφiλ=iLφ†K L

)iLφ(iλ) =iLφ) (†LKL(

⇒  Hermitian problem 
     with same EVs!

⇒  all EVs strictly real
⇒  “anomalous states” removed?
⇒  low-lying exotics removed!

GE, FBS 58 (2017)

𝜆
1

𝜆
1

Re

Im𝑀/(𝑚��𝑚�)𝑀/(𝑚��𝑚�)

15

10

5

1

-2

-1

0

1

2

0.0

0.5

1.0

1
iλ

0.0
0

4

8

12

16

20

0.2 0.4 0.6 0.8 1.0
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Complex eigenvalues?

Excited states: some EVs 
are complex conjugate? 

Typical for unequal-mass systems,
already in Wick-Cutkosky model 
Wick 1954, Cutkosky 1954

Ahlig, Alkofer,  Ann. Phys. 275 (1999)
Connection with “anomalous” states?

)M(K )M(G )M(iφ )M(iφ

= iλ

K and G are Hermitian (even for 
unequal masses!) but KG is not

If               and             : 
Cholesky decomposition 

†G=G 0G >

L†L=G

iφiλ=iLφ†K L

)iLφ(iλ) =iLφ) (†LKL(

⇒  Hermitian problem 
     with same EVs!

⇒  all EVs strictly real
⇒  level repulsion
⇒  “anomalous states” removed?

GE, FBS 58 (2017)

before: after:
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Complex eigenvalues?

Excited states: some EVs 
are complex conjugate? 

Typical for unequal-mass systems,
already in Wick-Cutkosky model 
Wick 1954, Cutkosky 1954

Ahlig, Alkofer,  Ann. Phys. 275 (1999)
Connection with “anomalous” states?

)M(K )M(G )M(iφ )M(iφ

= iλ

K and G are Hermitian (even for 
unequal masses!) but KG is not

If               and             : 
Cholesky decomposition 

†G=G 0G >

L†L=G

iφiλ=iLφ†K L

)iLφ(iλ) =iLφ) (†LKL(

⇒  Hermitian problem 
     with same EVs!

Eigenvalue spectrum
for pion channel

⇒  all EVs strictly real
⇒  level repulsion
⇒  “anomalous states” removed?

GE, FBS 58 (2017)

before: after:

only pos. EVs in G
only neg. EVs in G
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Two-body interactions 3-body
(+ permutations)

4-body

� � � ��

... plus permutations: 

(34)   (23)  

)q̄q)(q̄q(,)q̄q)(q̄q(,)q̄q)(¯qq(

(13)(12) (14)  (24)

Four-body equation

Bethe-Salpeter amplitude:                     

256 
Dirac-

Lorentz 
tensors

9 Lorentz invariants: 2 Color
tensors:

2, k2, q2p

k·q=1ω
k·p=2ω

q·p=3ω

P·p=1η
P·q=2η

P·k=3η

2M−=2P

⊗ ⊗)p, q, k, P(iτ)}jη{,}jω{,2, k2, q2p(if
i

∑
) =p, q, k, PΓ( Color Flavor

3⊗3 6⊗6
1⊗1 8⊗8

or
,
,

(Fierz-equivalent)
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Structure of the amplitude

Tetraquark notes

Gernot Eichmann

Defining the momenta as in your notes, we have the
two momentum multiplets

SM =
4∑

i=1
pi = P , T +

M = 1
2




1√
3 (p + q + k)

1√
6 (p + q − 2k)

1√
2 (q − p)


 . (1)

Apart from the trivial singlet P 2, the resulting nine
Lorentz invariants are

S0 = T +
M · T +

M = 1
4 (p2 + q2 + k2) ,

D0 = T +
M ∗ T +

M = 1
4S0

[ √
3 (q2 − p2)

p2 + q2 − 2k2

]
,

T0 = T +
M ∨ T +

M = 1
4S0




2 (ω1 + ω2 + ω3)√
2 (ω1 + ω2 − 2ω3)√

6 (ω2 − ω1)


 , (2)

T1 = T +
M · SM = 1

4S0




2 (η1 + η2 + η3)√
2 (η1 + η2 − 2η3)√

6 (η2 − η1)


 ,

with

ω1 = q · k , ω2 = p · k , ω3 = p · q (3)

and

η1 = p · P̂ , η2 = q · P̂ , η3 = k · P̂ . (4)

We can express p2, q2, k2 in terms of the doublet vari-
ables:

p2 = 2
3 S0(2 + s −

√
3 a) ,

q2 = 2
3 S0(2 + s −

√
3 a) ,

k2 = 4
3 S0(1 − s) .

(5)

Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
(

k ± P

2

)2
= k2 − M2

4 ± iMη3

= k2 − M2

4 ± iM
√

k2 z3 ,

(6)

where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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the complex k2 plane with apex −M2/4. That is, a pole
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π) leads to the condition

16
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π (7)

and therefore.

s = 1 + 3
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So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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Now let’s express the ‘pole variables’ in terms of these.
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
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π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2
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and therefore.

s = 1 + 3
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π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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and therefore.
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So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
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π) leads to the condition
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and therefore.
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So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
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π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
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(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
(

k ± P
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√
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
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π) leads to the condition
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and therefore.
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So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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Defining the momenta as in your notes, we have the
two momentum multiplets
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Apart from the trivial singlet P 2, the resulting nine
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with

ω1 = q · k , ω2 = p · k , ω3 = p · q (3)

and

η1 = p · P̂ , η2 = q · P̂ , η3 = k · P̂ . (4)

We can express p2, q2, k2 in terms of the doublet vari-
ables:

p2 = 2
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√
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k2 = 4
3 S0(1 − s) .
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Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
(

k ± P
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)2
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4 ± iMη3
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4 ± iM
√

k2 z3 ,
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)
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