Analytic structure of scattering amplitudes

GE, Duarte, Peña, Stadler, 1907.05402 [hep-ph]

Gernot Eichmann

IST Lisboa, Portugal

Non-perturbative QFT in Euclidean and Minkowski Coimbra, Portugal

September 12, 2019

Motivation

Resonances:

bumps in cross sections \Leftrightarrow poles in scattering amplitudes (complex momentum plane)

LHCb pentaquarks
Aaij, PRL 112 (2019) 222001

$\sigma / f_{o}(500)$: resonance in $\pi \pi$ scattering

- PDG 2010: " $f_{o}(600)$ " $\sqrt{ } s \sim(400 \ldots 1200)-\mathrm{i}(250 \ldots 500) \mathrm{MeV}$
- PDG 2012: " $f_{o}(500)$ "

$$
\sqrt{s} \sim(400 \ldots 550)-\mathrm{i}(200 \ldots 350) \mathrm{MeV}
$$

Motivation

Resonances:

Motivation

Lattice QCD:

$$
\langle\ldots\rangle=\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S[\psi, \bar{\psi}, A]} \quad(\ldots)
$$

- Finite volume:
bound states \& scattering states

```
vary volume,
Luescher method
```


- Infinite volume:

Bound states, resonances, branch cuts

Motivation

In terms of quarks and gluons?

Bound states:

Resonances by meson-baryon interactions:

Motivation

In terms of quarks and gluons?

Bound states:

Resonances by meson-baryon interactions:

Both bound states and resonances must be generated from quark-gluon structure!

Analogue for $\rho \rightarrow \pi \pi$:
Williams, 1804.11161 [hep-ph], Miramontes, Sanchis-Alepuz, 1906.06227 [hep-ph]

Motivation

Baryon excitation spectrum:

Review: GE, Sanchis-Alepuz, Williams, Alkofer, Fischer,
PPNP 91 (2016), 1606.09602
M [GeV]

- These are still bound states

Motivation

Baryon excitation spectrum:

Review: GE, Sanchis-Alepuz, Williams, Alkofer, Fischer,
PPNP 91 (2016), 1606.09602
M [GeV]

- These are still bound states
- Tetraquarks are resonances: internal poles emerge dynamically!
$\sigma, \kappa, a_{0} / f_{0}: \quad$ GE, Fischer, Heupel, PLB 753 (2016)
X (3872): Wallbott, GE, Fischer, PRD 100 (2019)

Questions

- Instead of extracting resonance information from spacelike data ($P^{2}>0$), can we calculate them directly in complex plane?
- On the second Riemann sheet?
- From four-dimensional, Lorentz-invariant integral equations?
- Related: Euclidean vs. Minkowski space - what's the deal?

Euclidean vs. Minkowski

- "We live in Minkowski space and not Euclidean space!"

Choice of metric cannot affect physics: $\quad P_{M}^{\mu}=\binom{P_{0}}{P} \Leftrightarrow P_{E}^{\mu}=\binom{P}{i P_{0}}$

Euclidean vs. Minkowski

- "We live in Minkowski space and not Euclidean space!"

Choice of metric cannot affect physics: $\quad P_{M}^{\mu}=\binom{P_{0}}{P} \Leftrightarrow P_{E}^{\mu}=\binom{P}{i P_{0}}$

- Spacelike ("Euclidean") vs. timelike ("Minkowski")?

Resonances

What about $P^{2} \in \mathbb{C}$?
What if phase space is multi-dimensional?

Euclidean vs. Minkowski

- "We live in Minkowski space and not Euclidean space!"

Choice of metric cannot affect physics: $\quad P_{M}^{\mu}=\binom{P_{0}}{P} \Leftrightarrow P_{E}^{\mu}=\binom{P}{i P_{0}}$

- Spacelike ("Euclidean") vs. timelike ("Minkowski")?

Resonances

What about $P^{2} \in \mathbb{C}$?
What if phase space is multi-dimensional?

- It's about the integration path... but

$\mathrm{E}=\mathrm{M}$

\# E' ... "naive Euclidean"
"We need XY in Minkowski space" 马
"We calculate XY directly in Minkowski space"
"The Euclidean calculation is wrong" $\$$

Textbook example

$$
i \int d^{4} k \frac{1}{k^{2}-m^{2}+i \epsilon} \cdots=i \int d^{3} k \int_{-\infty(1+i \epsilon)}^{\infty(1+i \epsilon)} d k_{0} \frac{1}{k_{0}^{2}-\omega^{2}} \cdots
$$

- Do k_{0} integration first, pick up \boldsymbol{k}-dependent residues, integrate over \boldsymbol{k}

Textbook example

$$
i \int d^{4} k \frac{1}{k^{2}-m^{2}+i \epsilon} \cdots=i \int d^{3} k \int_{-\infty(1+i \epsilon)}^{\infty(1+i \epsilon)} d k_{0} \frac{1}{k_{0}^{2}-\omega^{2}} \cdots
$$

- Do k_{0} integration first, pick up \boldsymbol{k}-dependent residues, integrate over \boldsymbol{k}

Euclidean: $\quad k_{4}=i k_{0}$, but $d^{4} k_{\mathrm{E}}=-i d^{4} k_{\mathrm{M}}$

$$
\int d^{3} k \int_{-\infty}^{\infty} d k_{4} \frac{1}{k_{4}^{2}+\omega^{2}} \cdots
$$

Textbook example

$$
i \int d^{4} k \frac{1}{k^{2}-m^{2}+i \epsilon} \cdots=i \int d^{3} k \int_{-\infty(1+i \epsilon)}^{\infty(1+i \epsilon)} d k_{0} \frac{1}{k_{0}^{2}-\omega^{2}} \cdots
$$

- Do k_{0} integration first, pick up \boldsymbol{k}-dependent residues, integrate over \boldsymbol{k}

Euclidean: $\quad k_{4}=i k_{0}$, but $d^{4} k_{\mathrm{E}}=-i d^{4} k_{\mathrm{M}}$

$$
\int d^{3} k \int_{-\infty}^{\infty} d k_{4} \frac{1}{k_{4}^{2}+\omega^{2}} \cdots
$$

- Now exchange $d^{3} k \leftrightarrow d k_{4}$ integration:

$$
\int_{-\infty}^{\infty} d k_{4} \int d^{3} k \frac{1}{k_{4}^{2}+\omega^{2}} \cdots
$$

has cuts instead of poles
\rightarrow avoid cuts in k_{4} integration

Textbook example

$$
i \int d^{4} k \frac{1}{k^{2}-m^{2}+i \epsilon} \cdots=i \int d^{3} k \int_{-\infty(1+i \epsilon)}^{\infty(1+i \epsilon)} d k_{0} \frac{1}{k_{0}^{2}-\omega^{2}} \cdots
$$

- Do k_{0} integration first, pick up \boldsymbol{k}-dependent residues, integrate over \boldsymbol{k}

Euclidean:

- Make everything dimensionless: $r^{\mu}=k_{\mathrm{E}}^{\mu} / m$
- For manifest Lorentz invariance:
$k_{\mathrm{E}}^{2}, d \Omega$ instead of $k_{4}, d^{3} k$:
$\int_{-\infty}^{\infty} d k_{\mathrm{E}}^{2} \int d \Omega \frac{1}{k_{\mathrm{E}}^{2}+m^{2}} \cdots \quad k_{\mathrm{E}}^{2}=-k^{2}$
\rightarrow avoid cuts in k_{E}^{2} integration

Two poles

Consider two-point function (current correlator, self energy, vacuum polarization, ...)

$$
\int d^{4} k \frac{1}{k_{+}^{2}+m^{2}} \frac{1}{k_{-}^{2}+m^{2}}
$$

Two poles

Consider two-point function (current correlator, self energy, vacuum polarization, ...)

$$
\int d^{4} k \frac{1}{k_{+}^{2}+m^{2}} \frac{1}{k_{-}^{2}+m^{2}}
$$

Define $P^{2}=4 m^{2} t$:

Two poles

Consider two-point function (current correlator, self energy, vacuum polarization, ...)

$$
\int d^{4} k \frac{1}{k_{+}^{2}+m^{2}} \frac{1}{k_{-}^{2}+m^{2}}
$$

Define $P^{2}=4 m^{2} t$:

Simpler in \sqrt{t} :

Two poles

Consider two-point function (current correlator, self energy, vacuum polarization, ...)

$$
\int d^{4} k \frac{1}{k_{+}^{2}+m^{2}} \frac{1}{k_{-}^{2}+m^{2}}
$$

Then:

Two poles

Consider two-point function (current correlator, self energy, vacuum polarization, ...)

$$
\int d^{4} k \frac{1}{k_{+}^{2}+m^{2}} \frac{1}{k_{-}^{2}+m^{2}}
$$

Then:

Two poles

Consider two-point function (current correlator, self energy, vacuum polarization, ...)

$$
\int d^{4} k \frac{1}{k_{+}^{2}+m^{2}} \frac{1}{k_{-}^{2}+m^{2}}
$$

Then:

Two poles

Consider two-point function (current correlator, self energy, vacuum polarization, ...)

$$
\int d^{4} k \frac{1}{k_{+}^{2}+m^{2}} \frac{1}{k_{-}^{2}+m^{2}}
$$

Two poles

Consider two-point function (current correlator, self energy, vacuum polarization, ...)

$$
\int d^{4} k \frac{1}{k_{+}^{2}+m^{2}} \frac{1}{k_{-}^{2}+m^{2}}
$$

Two poles

Consider two-point function (current correlator, self energy, vacuum polarization, ...)

$$
\int d^{4} k \frac{1}{k_{+}^{2}+m^{2}} \frac{1}{k_{-}^{2}+m^{2}}
$$

Two poles

Consider two-point function (current correlator, self energy, vacuum polarization, ...)

$$
\int d^{4} k \frac{1}{k_{+}^{2}+m^{2}} \frac{1}{k_{-}^{2}+m^{2}}
$$

Where does the $i \in$ come from?

$$
\begin{aligned}
& \sum_{n=0}^{\infty} e^{-i E_{n} T}|n\rangle\langle n \mid \Omega\rangle \xrightarrow{T \rightarrow \infty(1-i \epsilon)} e^{-i E_{0} T}|0\rangle\langle 0 \mid \Omega\rangle \\
& \\
& \int_{-\infty(1+i \epsilon)}^{\infty(1+i \epsilon)} d k_{0} \quad \Leftrightarrow \quad \int_{-\infty(i-\epsilon)}^{\infty(i-\epsilon)} d r_{4}
\end{aligned}
$$

Two poles

Consider two-point function (current correlator, self energy, vacuum polarization, ...)

$$
\int d^{4} k \frac{1}{k_{+}^{2}+m^{2}} \frac{1}{k_{-}^{2}+m^{2}}
$$

$$
\int_{-\infty(i-\epsilon)}^{\infty(i-\epsilon)} d r_{4}
$$

Two poles

Consider two-point function (current correlator, self energy, vacuum polarization, ...)

$$
\int d^{4} k \frac{1}{k_{+}^{2}+m^{2}} \frac{1}{k_{-}^{2}+m^{2}}
$$

$$
\begin{gathered}
\infty(i-\epsilon) \\
\iint_{-\infty} d r_{4} \cdots \\
\hline(i-\epsilon)
\end{gathered}
$$

Two poles

Consider two－point function（current correlator，self energy，vacuum polarization，．．．）

$$
\int d^{4} k \frac{1}{k_{+}^{2}+m^{2}} \frac{1}{k_{-}^{2}+m^{2}}
$$

$$
\begin{gathered}
\infty(i-\epsilon) \\
\iint_{-\infty} d r_{4} \cdots \\
\hline(i-\epsilon)
\end{gathered}
$$

Two poles

Consider two-point function (current correlator, self energy, vacuum polarization, ...)

$$
\int d^{4} k \frac{1}{k_{+}^{2}+m^{2}} \frac{1}{k_{-}^{2}+m^{2}}
$$

$$
\begin{aligned}
& \infty(i-\epsilon) \\
& \quad \int d r_{4} \cdots \\
& -\infty(i-\epsilon)
\end{aligned}
$$

So:

$\mathrm{E}=\mathrm{M}$

$$
\begin{aligned}
& \int d^{3} k \int_{-\infty} d k_{4} \\
& \text {... close contours analytically, pick up residues } \\
& \int_{-\infty}^{\infty} d k_{4} \int d^{3} k \\
& \text {... avoid cuts by numerical contour deformation }
\end{aligned}
$$

Suggestions for better wording:
"We need XY in Minkowski space"
"We calculate XY elireetly in Mintewskispaee"
... in the full kinematical domain
... above threshold
... using residue calculus
The naive Euclidean calculation tis would be wrong in certain kinematical regions (if anyone actually did that)

So:

$$
\mathbf{E = M} \quad \begin{array}{cc}
\int d^{3} k \int_{-\infty}^{\infty} d k_{4} & \ldots \text { close contours analytically, pick up residues } \\
\int_{-\infty}^{\infty} d k_{4} \int^{3} k \quad \ldots \text { avoid cuts by numerical contour deformation }
\end{array}
$$

Suggestions for better wording:
"We need XY in Minksispace"
"We calculate XY elireetly in Mintewski space"
... in the full kinematical domain
... above threshold
... using residue calculus
The naive Euclidean calculation is would be wrong in certain kinematical regions (if anyone actually did that)

Quark propagator with contour deformation
... and without

Contour deformations

2-point functions:

- Fermion propagator in QED3

Maris, PRD 52 (1995)

- Quark propagator in QCD

GE, PhD thesis (2009)

- Gluon and ghost propagators in QCD Strauss, Fischer, Kellermann, PRL 109 (2012)
- Glueball correlator in YM

Windisch, Alkofer, Haase, Liebmann, CPC 184 (2013), Windisch, Huber, Alkofer, PRD 87 (2013)

- Finite-T spectral functions from FRG

Pawlowski, Strodthoff, Wink, PRD 98 (2018)
(2018)

3-point functions:

- Rare pion decay $\pi^{0} \rightarrow e^{+} e^{-}$ Weil, GE, Fischer, Williams, PRD 96 (2017)
- Rho-meson decay

Williams, 1804.11161

- Quark-photon vertex Miramontes, Sanchis-Alepuz, 1906.06227

Scalar system

2 parameters:

$$
c=\frac{g^{2}}{(4 \pi m)^{2}}, \quad \beta=\frac{\mu}{m}
$$

Dressed propagators do not change much:

Tree-level propagators ok at least for small coupling
Ahlig, Alkofer, Ann. Phys. 275 (1999)

$$
\begin{aligned}
D\left(p^{2}\right) & =\frac{1}{Z} \frac{1}{p^{2}+M^{2}\left(p^{2}\right)} \\
D^{\prime}\left(p^{2}\right) & =\frac{1}{Z} \frac{1}{p^{2}+M^{\prime 2}\left(p^{2}\right)}
\end{aligned}
$$

Bound states \& resonances

- Homogeneous BSE: $\psi=K G_{0} \psi$

\rightarrow BS amplitude: eigenvalue spectrum of $K G_{0}$ for given $J^{P C}$ channel

Wick 1954,
Cutkosky 1954,
Nakanishi 1969, ...

- Inhomogeneous BSE: $\Gamma=\Gamma_{o}+K G_{0} \Gamma$

\rightarrow Vertex: bound-state $\begin{aligned} & \text { and resonance poles } \\ & \text { for given } J^{P C} \text { channel }\end{aligned} \quad \Gamma=\frac{\Gamma_{o}}{1-K G_{0}}$
- Scattering equation: $T=K+K G_{0} T$

\rightarrow Scattering amplitude, all singularities

$$
T=\frac{K}{1-K G_{0}}
$$

Bound states \& resonances

- Homogeneous BSE:

$\operatorname{Im} \sqrt{t}=M /(2 m)$

$$
\begin{aligned}
& \Rightarrow \psi(t)=c K G_{o}(t) \psi(t) \\
& \Rightarrow \frac{1}{\lambda(t)} \stackrel{!}{=} c
\end{aligned}
$$

Bound states \& resonances

- Homogeneous BSE:

$\operatorname{Im} \sqrt{t}=M /(2 m)$

$$
\begin{aligned}
& \Rightarrow \psi(t)=c K G_{o}(t) \psi(t) \\
& \Rightarrow \frac{1}{\lambda(t)} \stackrel{!}{=} c
\end{aligned}
$$

Contour deformation

- Homogeneous BSE:

$$
\psi(X, Z, t)=\int_{0}^{\infty} d x \int_{-1}^{1} d z K(X, x, Z, z) \underbrace{G_{0}(x, z, t)}_{\frac{1}{(x+t+1)^{2}-4 x t z^{2}}} \psi(x, z, t)
$$

\rightarrow cuts from G_{0} in complex x plane for given t
\rightarrow cuts from K in complex x plane for given X

Contour deformation

－Homogeneous BSE：

$$
\psi(X, Z, t)=\int_{0}^{\infty} d x \int_{-1}^{1} d z K(X, x, Z, z) \underbrace{G_{0}(x, z, t)}_{\frac{1}{(x+t+1)^{2}-4 x t z^{2}}} \psi(x, z, t)
$$

\rightarrow cuts from G_{0} in complex x plane for given t
\rightarrow cuts from K in complex x plane for given X
－Find path in x that avoids G_{0} cuts
－Paths in X and x must match \rightarrow each point on path creates another cut from K

Contour deformation

- Homogeneous BSE:

$$
\psi(X, Z, t)=\int_{0}^{\infty} d x \int_{-1}^{1} d z K(X, x, Z, z) \underbrace{G_{0}(x, z, t)}_{\frac{1}{(x+t+1)^{2}-4 x t z^{2}}} \psi(x, z, t)
$$

\rightarrow cuts from G_{O} in complex x plane for given t
\rightarrow cuts from K in complex x plane for given X

- Find path in x that avoids G_{0} cuts
- Paths in X and x must match \rightarrow each point on path creates another cut from K
- All cuts in yellow area
- $\operatorname{Re} \sqrt{x}$ and $\operatorname{Abs} \sqrt{x}$ must never decrease
- Can cover entire complex t plane!

Contour deformation

- Homogeneous BSE:

$$
\psi(X, Z, t)=\int_{0}^{\infty} d x \int_{-1}^{1} d z K(X, x, Z, z) \underbrace{G_{0}(x, z, t)}_{\frac{1}{(x+t+1)^{2}-4 x t z^{2}}} \psi(x, z, t)
$$

\rightarrow cuts from G_{0} in complex x plane for given t
\rightarrow cuts from K in complex x plane for given X

- Find path in x that avoids G_{0} cuts
- Paths in X and x must match \rightarrow each point on path creates another cut from K
- All cuts in yellow area
- $\operatorname{Re} \sqrt{x}$ and $\operatorname{Abs} \sqrt{x}$ must never decrease
- Can cover entire complex t plane!

Contour deformation

For onshell scattering amplitude more complicated:

Can still cover parts of complex t plane:

BSE Eigenvalues

BSE Eigenvalues

BSE Eigenvalues

4 $\square>4$ 句 >4 三 >4 引

BSE Eigenvalues

$\frac{1}{\lambda(t)} \stackrel{!}{=} c+0 \cdot i$
still valid for complex poles: can detect resonances from homogeneous BSE

How to access 2nd sheet?

RVP: Resonances via Padé /
Schlessinger point method / Continued fraction

Schlessinger, Phys. Rev. 167 (1968)
Tripolt, Haritan, Wambach, Moiseyev, PLB 774 (2017)

$$
f(z)=\frac{c_{1}}{1+\frac{c_{2}\left(z-z_{1}\right)}{1+\frac{c_{3}\left(z-z_{2}\right)}{1+\frac{c_{4}\left(z-z_{3}\right)}{\ldots}}}}
$$

Pole trajectories

- No resonances above threshold
- But RVP sensitive to \# input points, also doesn't handle cuts well

Pole trajectories:

Zeros of Im 1/ג

Pole trajectories

- No resonances above threshold
- But RVP sensitive to \# input points, also doesn't handle cuts well
- Vertex from inhomogeneous BSE: only threshold cusp, no resonance bump

Pole trajectories:
Zeros of Im 1/ג

Pole trajectories

- No resonances above threshold
- But RVP sensitive to \# input points, also doesn't handle cuts well
- Vertex from inhomogeneous BSE: only threshold cusp, no resonance bump

Pole trajectories:
Zeros of Im 1/ג

Pole trajectories

- No resonances above threshold
- But RVP sensitive to \# input points, also doesn't handle cuts well
- Vertex from inhomogeneous BSE: only threshold cusp, no resonance bump

Pole trajectories:
Zeros of Im 1/ג

Pole trajectories

- No resonances above threshold
- But RVP sensitive to \# input points, also doesn't handle cuts well
- Vertex from inhomogeneous BSE: only threshold cusp, no resonance bump

Pole trajectories:
Zeros of Im 1/ג

Pole trajectories

- No resonances above threshold
- But RVP sensitive to \# input points, also doesn't handle cuts well
- Vertex from inhomogeneous BSE: only threshold cusp, no resonance bump

Pole trajectories:
Zeros of Im 1/ג

Pole trajectories

- No resonances above threshold
- But RVP sensitive to \# input points, also doesn't handle cuts well
- Vertex from inhomogeneous BSE: only threshold cusp, no resonance bump

Pole trajectories:
Zeros of Im 1/ג

Pole trajectories

- No resonances above threshold
- But RVP sensitive to \# input points, also doesn't handle cuts well
- Vertex from inhomogeneous BSE: only threshold cusp, no resonance bump

Pole trajectories:
Zeros of Im 1/ג

Pole trajectories

- No resonances above threshold
- But RVP sensitive to \# input points, also doesn't handle cuts well
- Vertex from inhomogeneous BSE: only threshold cusp, no resonance bump

Pole trajectories:
Zeros of Im 1/ג

Pole trajectories

Pole trajectories:
Zeros of Im $1 / \lambda$

- No resonances above threshold
- But RVP sensitive to \# input points, also doesn't handle cuts well
- Vertex from inhomogeneous BSE: only threshold cusp, no resonance bump

- Virtual bound states?

Glöckle,"The QM Few-Body Problem", 1983 Hanhart, Pelaez, Rios, PLB 739 (2014)

Poles on 2nd sheet

Poles on 2nd sheet

Poles on 2nd sheet

Poles on 2nd sheet

- RVP accurately reproduces bound-state pole on 1st sheet
- For small couplings, RVP points to virtual states (poles on axis of 2nd sheet)

Two-body unitarity

Follows from scattering equation:

$$
\begin{aligned}
& T=K+K G_{0} T \quad \Rightarrow T^{-1}=K^{-1}-G_{0} \\
& \Rightarrow T_{\phi}{ }^{-1}=T_{\circ}^{-1}=\left(K_{\phi}^{-1}-K_{-}^{-1}\right)-\left(G_{O_{\phi}}-G_{O_{-}}\right) \\
& \Rightarrow T_{\phi}=T_{\circ}=T_{\phi}\left(G_{O_{\phi}}-G_{O_{\mathrm{e}}}\right) T_{\circ}+(\ldots)
\end{aligned}
$$

e.g.: Gribov Lectures on Theoretical Physics, Cambridge 2008

$$
\text { If } T_{ \pm} \equiv T(t \pm i \epsilon):
$$

With partial-wave decomposition:

$$
f_{l}(t)_{I I}=\frac{f_{l}(t)_{I}}{1-2 i \tau(t) f_{l}(t)_{I}}
$$

\rightarrow But this requires scattering amplitude

Scattering amplitude

Depends on two variables: t and crossing variable $\lambda=\frac{s-u}{4 m^{2}}$

- Bound states, resonances and t-channel cuts at fixed $t \rightarrow$ determined by scattering equation

- Exchange-particle poles from K at fixed $s \equiv \mu^{2}$ and $u=\mu^{2}$ (no poles in $T-K$)

- Perturbative cuts for $s>4 \mu^{2}$ and $u>4 \mu^{2}$

Scattering amplitude

Depends on two variables: t and crossing variable $\lambda=\frac{s-u}{4 m^{2}}$

- Bound states, resonances and t-channel cuts at fixed $t \rightarrow$ determined by scattering equation

- Exchange-particle poles from K at fixed $s=\mu^{2}$ and $u=\mu^{2}$ (no poles in $T-K$)

- Perturbative cuts for $s>4 \mu^{2}$ and $u>4 \mu^{2}$

Scattering amplitude

Depends on two variables: t and crossing variable $\lambda=\frac{s-u}{4 m^{2}}$

- Bound states, resonances and t-channel cuts at fixed $t \rightarrow$ determined by scattering equation

- Exchange-particle poles from K at fixed $s=\mu^{2}$ and $u=\mu^{2}$ (no poles in $T-K$)

- Perturbative cuts for $s>4 \mu^{2}$ and $u>4 \mu^{2}$

Scattering amplitude

Depends on two variables: t and crossing variable $\lambda=\frac{s-u}{4 m^{2}}$

- To obtain onshell scattering amplitude, must first solve half-offshell scattering equation

- Kinematics same as in Compton scattering GE, Ramalho, PRD 98 (2018)

Scattering amplitude

Partial-wave expansion:

$$
T(t, \lambda)=\sum_{l=0}^{\infty}(2 l+1) f_{l}(t) P_{l}(\cos \Theta) \approx f_{0}(t)
$$

Amplitude on 2nd sheet:

$$
f_{l}(t)_{I I}=\frac{f_{l}(t)_{I}}{1-2 i \tau(t) f_{l}(t)_{I}}
$$

Scattering amplitude

Partial-wave expansion:

$$
T(t, \lambda)=\sum_{l=0}^{\infty}(2 l+1) f_{l}(t) P_{l}(\cos \Theta) \approx f_{0}(t)
$$

Amplitude on 2nd sheet:

$$
f_{l}(t)_{I I}=\frac{f_{l}(t)_{I}}{1-2 i \tau(t) f_{l}(t)_{I}}
$$

Scattering amplitude

Partial-wave expansion:

$$
T(t, \lambda)=\sum_{l=0}^{\infty}(2 l+1) f_{l}(t) P_{l}(\cos \Theta) \approx f_{0}(t)
$$

Amplitude on 2nd sheet:

$$
f_{l}(t)_{I I}=\frac{f_{l}(t)_{I}}{1-2 i \tau(t) f_{l}(t)_{I}}
$$

Scattering amplitude

Partial-wave expansion:

$$
T(t, \lambda)=\sum_{l=0}^{\infty}(2 l+1) f_{l}(t) P_{l}(\cos \Theta) \approx f_{0}(t)
$$

Amplitude on 2nd sheet:

$$
f_{l}(t)_{I I}=\frac{f_{l}(t)_{I}}{1-2 i \tau(t) f_{l}(t)_{I}}
$$

Scattering amplitude

Partial-wave expansion:

$$
T(t, \lambda)=\sum_{l=0}^{\infty}(2 l+1) f_{l}(t) P_{l}(\cos \Theta) \approx f_{0}(t)
$$

Amplitude on 2nd sheet:

$$
f_{l}(t)_{I I}=\frac{f_{l}(t)_{I}}{1-2 i \tau(t) f_{l}(t)_{I}}
$$

Scattering amplitude

Partial-wave expansion:

$$
T(t, \lambda)=\sum_{l=0}^{\infty}(2 l+1) f_{l}(t) P_{l}(\cos \Theta) \approx f_{o}(t)
$$

Amplitude on 2nd sheet:

$$
f_{l}(t)_{I I}=\frac{f_{l}(t)_{I}}{1-2 i \tau(t) f_{l}(t)_{I}}
$$

Scattering amplitude

Partial-wave expansion:

$$
T(t, \lambda)=\sum_{l=0}^{\infty}(2 l+1) f_{l}(t) P_{l}(\cos \Theta) \approx f_{0}(t)
$$

Amplitude on 2nd sheet:

$$
f_{l}(t)_{I I}=\frac{f_{l}(t)_{I}}{1-2 i \tau(t) f_{l}(t)_{I}}
$$

Scattering amplitude

Partial-wave expansion:

$$
T(t, \lambda)=\sum_{l=0}^{\infty}(2 l+1) f_{l}(t) P_{l}(\cos \Theta) \approx f_{0}(t)
$$

Amplitude on 2nd sheet:

$$
f_{l}(t)_{I I}=\frac{f_{l}(t)_{I}}{1-2 i \tau(t) f_{l}(t)_{I}}
$$

Pole trajectories

- Scalar model doesn't have resonances but only virtual bound states
- Need full scattering equation to find them (2-body unitarity)
- For nearby resonances, (in-)homogeneous BSE + RVP probably sufficient

Pole trajectories

Analogous for other values of β
(i.e., exchange-particle masses)

Inside each band a state is bound
At fixed β, when increasing coupling:
virtual states \rightarrow bound states \rightarrow tachyons

Here for $\beta=2, c=12$:

- Ground state has become tachyonic, 1st excited state is not yet bound
- Large structure is exchange particle pole at fixed s (or u), cf. Mandelstam plane

Benchmarks

- Binding energies
$c=1, \beta=0.5$

$\operatorname{Im} \sqrt{t}$	π / λ_{0} this work	π / λ_{0} $[1,2]$	π / λ_{0} $[3]$
0.999	$1.18(3)$	1.211	1.216
0.995	$1.43(1)$	1.440	1.440
0.99	1.623	1.624	1.623
0.95	2.498	2.498	2.498
0.90	3.251	3.251	3.251
0.80	4.416	4.416	4.416
0.75	4.901	4.901	4.901
0.6	6.094	6.096	6.094
0.4	7.205	7.206	7.204
0.2	7.849	7.850	7.849
0	8.061	8.062	8.061

[1, 2] Kusaka, Simpson, Williams, PRD 56 (1997) Karmanov, Carbonell, EPJ A 28 (2006)
[3] Frederico, Salmè, Viviani, PRD 89 (2014)

- Phase shifts

$$
f_{l}(t)=\frac{1}{2 i \tau(t)}\left[e^{2 i \delta_{l}(t)}-1\right]
$$

Summary \& Outlook

- Contour deformations:

Toolbox for treating resonances with integral equations

- Can be taken over without changes to $N N, N \pi$ scattering, etc. \rightarrow amplitude analyses
- QCD with functional methods: must still implement resonance mechanism, tetraquarks are good starting point (it's automatic)
- Homogeneous BSE is good enough to extract pole positions on 2nd sheet (nearby resonances, otherwise at least ballpark estimates)
- Generally applicable for circumventing singularities (e.g. from quark propagator) \rightarrow highly excited states, timelike FFs, FFs at large Q^{2}, PDFs, GPDs, TMDs, \ldots
- Scalar system: template for resonances in Higgs sector. Model considered here doesn't have resonances but virtual bound states

Backup slides

Scattering amplitude

Depends on two variables: t and crossing variable $\lambda=\frac{s-u}{4 m^{2}}$

- λ dependence "boring": exchange poles and cuts, $T-K$ almost flat (cuts only)
- Also $T(\lambda)$ is flat if exchange poles far away \Rightarrow partial-wave expansion converges rapidly

$$
T(t, \lambda)=\sum_{l=0}^{\infty}(2 l+1) f_{l}(t) P_{l}(\cos \theta) \approx f_{o}(t)
$$

- Extract phase shifts, make Argand plots, etc.

$$
f_{l}(t)=\frac{1}{2 i \tau(t)}\left[e^{2 i \delta_{l}(t)}-1\right]
$$

Complex eigenvalues?

Excited states: some EVs are complex conjugate?

Typical for unequal-mass systems, already in Wick-Cutkosky model
Wick 1954, Cutkosky 1954
Connection with "anomalous" states?
Ahlig, Alkofer, Ann. Phys. 275 (1999)

If $G=G^{\dagger}$ and $G>0$:
Cholesky decomposition $G=L^{\dagger} L$

$$
\begin{array}{ll}
K L^{\dagger} L \phi_{i}=\lambda_{i} \phi_{i} & \Rightarrow \\
\left(L K L^{\dagger}\right)\left(L \phi_{i}\right)=\lambda_{i}\left(L \phi_{i}\right) & \text { Hermitian problem } \\
\text { with same EVs! }
\end{array}
$$

K and G are Hermitian (even for unequal masses!) but $K G$ is not

Complex eigenvalues?

Excited states: some EVs are complex conjugate?

Typical for unequal-mass systems, already in Wick-Cutkosky model
Wick 1954, Cutkosky 1954
Connection with "anomalous" states?
Ahlig, Alkofer, Ann. Phys. 275 (1999)

If $G=G^{\dagger}$ and $G>0$:
Cholesky decomposition $G=L^{\dagger} L$

$$
\begin{array}{ll}
K L^{\dagger} L \phi_{i}=\lambda_{i} \phi_{i} & \Rightarrow \\
\left(L K L^{\dagger}\right)\left(L \phi_{i}\right)=\lambda_{i}\left(L \phi_{i}\right) & \text { Hermitian problem } \\
\text { with same EVs! }
\end{array}
$$

\Rightarrow all EVs strictly real
\Rightarrow level repulsion
\Rightarrow "anomalous states" removed?

Complex eigenvalues?

Excited states: some EVs are complex conjugate?

Typical for unequal-mass systems, already in Wick-Cutkosky model
Wick 1954, Cutkosky 1954
Connection with "anomalous" states? Ahlig, Alkofer, Ann. Phys. 275 (1999)
K and G are Hermitian (even for unequal masses!) but $K G$ is not

Eigenvalue spectrum for pion channel
GE, FBS 58 (2017)
___ only pos. EVs in G
.... only neg. EVs in G

If $G=G^{\dagger}$ and $G>0$:
Cholesky decomposition $G=L^{\dagger} L$

$$
\begin{array}{lc}
K L^{\dagger} L \phi_{i}=\lambda_{i} \phi_{i} & \Rightarrow \text { Hermitian problem } \\
\left(L K L^{\dagger}\right)\left(L \phi_{i}\right)=\lambda_{i}\left(L \phi_{i}\right) & \text { with same EVs! }
\end{array}
$$

\Rightarrow all EVs strictly real
\Rightarrow level repulsion
\Rightarrow "anomalous states" removed?

Four-body equation

Two-body interactions
... plus permutations:

$$
\begin{array}{ll}
(q q)(\bar{q} \bar{q}), & (q \bar{q})(q \bar{q}), \\
(12)(q 4))(q \bar{q}) \\
(23)(14)
\end{array}
$$

Bethe-Salpeter amplitude:

$$
\begin{array}{cccc}
\Gamma(p, q, k, P)=\sum_{i} f_{i}\left(p^{2}, q^{2}, k^{2},\left\{\omega_{j}\right\},\left\{\eta_{j}\right\}\right) & \tau_{i}(p, q, k, P) & \otimes & \text { Color } \\
\text { 9 Lorentz invariants: } & \text { 256 } & \text { 2 Color } \\
p^{2}, \quad q^{2}, \quad k^{2} & \text { Dirac- } & \text { tensors: } \\
\omega_{1}=q \cdot k & \eta_{1}=p \cdot P & \text { Lorentz } & 3 \otimes \overline{3}, 6 \otimes \overline{6} \text { or } \\
\omega_{2}=p \cdot k & \eta_{2}=q \cdot P & \text { tensors } & 1 \otimes 1,8 \otimes 8 \\
\omega_{3}=p \cdot q & \eta_{3}=k \cdot P & & \text { (Fierz-equivalent) } \\
P^{2}=-M^{2} & &
\end{array}
$$

Structure of the amplitude

- Singlet: symmetric variable, carries overall scale:

$$
\mathcal{S}_{0}=\frac{1}{4}\left(p^{2}+q^{2}+k^{2}\right)
$$

- Doublet: $\mathcal{D}_{0}=\frac{1}{4 \mathcal{S}_{0}}\left[\begin{array}{c}\sqrt{3}\left(q^{2}-p^{2}\right) \\ p^{2}+q^{2}-2 k^{2}\end{array}\right]$

Mandelstam triangle, outside: meson and diquark poles!

Lorentz invariants can be grouped into multiplets of the permutation group S4:
GE, Fischer, Heupel, PRD 92 (2015)

- Triplet: $\tau_{0}=\frac{1}{4 \mathcal{S}_{0}}\left[\begin{array}{c}2\left(\omega_{1}+\omega_{2}+\omega_{3}\right) \\ \sqrt{2}\left(\omega_{1}+\omega_{2}-2 \omega_{3}\right) \\ \sqrt{6}\left(\omega_{2}-\omega_{1}\right)\end{array}\right]$
tetrahedron bounded by $p_{i}^{2}=0$, outside: quark singularities
- Second triplet: 3dim. sphere

$$
\mathcal{T}_{1}=\frac{1}{4 \mathcal{S}_{0}}\left[\begin{array}{c}
2\left(\eta_{1}+\eta_{2}+\eta_{3}\right) \\
\sqrt{2}\left(\eta_{1}+\eta_{2}-2 \eta_{3}\right) \\
\sqrt{6}\left(\eta_{2}-\eta_{1}\right)
\end{array}\right]
$$

u

Tetraquark mass

