Distributions of Quarks and Gluons in the Pion and Kaon

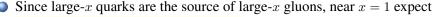
Ian Cloët
Argonne National Laboratory

Non-Perturbative QFT in Euclidean and Minkowski
10-12 September 2019, Department of Physics, University of Coimbra,
Portugal

Pion PDF Puzzle – Much Ado About Nothing 2

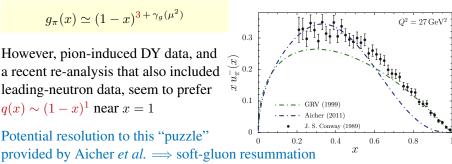
Longstanding perturbative QCD prediction that pion PDF near x = 1 behaves as

$$q_{\pi}(x) \simeq (1-x)^{2+\gamma_q(\mu^2)}$$



$$g_{\pi}(x) \simeq (1-x)^{3+\gamma_g(\mu^2)}$$

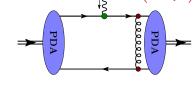
- However, pion-induced DY data, and a recent re-analysis that also included leading-neutron data, seem to prefer $q(x) \sim (1-x)^1 \text{ near } x = 1$
- Potential resolution to this "puzzle"
- However, pOCD predictions need only set in very near x = 1, the observed $q(x) \simeq (1-x)^1$ behavior could be real where data exists



Pion PDF Puzzle – Much Ado About Nothing

Longstanding perturbative QCD prediction that pion PDF near x = 1 behaves as

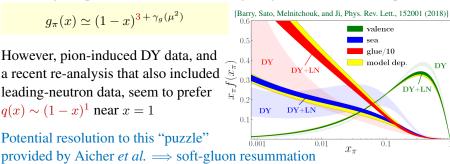
$$q_{\pi}(x) \simeq (1-x)^{2+\gamma_q(\mu^2)}$$



Since large-x quarks are the source of large-x gluons, near x = 1 expect

$$g_{\pi}(x) \simeq (1-x)^{3+\gamma_g(\mu^2)}$$

- However, pion-induced DY data, and a recent re-analysis that also included leading-neutron data, seem to prefer $q(x) \sim (1-x)^1 \text{ near } x = 1$
- Potential resolution to this "puzzle"
- However, pQCD predictions need only set in very near x = 1, the observed $q(x) \simeq (1-x)^1$ behavior could be real where data exists



DSEs + Pion PDFs

- DSE prediction [Hecht (2001); etc] that $q_{\pi}(x) \simeq (1-x)^2$ as $x \to 1$
 - related to $1/k^2$ dependence of BSE kernel at large relative momentum
- Previous DSE PDF calculations have used Ward-identity ansatz (WIA)

$$\Lambda_q(z, p, n) \to \Lambda_q^{\text{WIA}}(z, p, n) = \delta (1 - z) \ n^{\mu} \frac{\partial}{\partial p^{\mu}} S_q^{-1}(p)$$

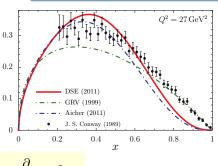
0.6

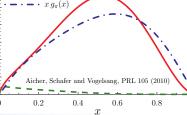
 $\mathop{\to}\limits^{}_{}\mathop{\to}\limits^{}_{}$

 $\overset{=}{\underset{\leftarrow}{\text{0.3}}}\overset{0.3}{\underset{0.2}{\text{0.2}}}$

0.1

- WIA respects baryon sum rule but not higher moments e.g. momentum sum rule
- momentum is not distributed correctly between quarks and gluons
- Aicher: $q_{\pi}(x) \sim (1-x)^{1.3}$ as $x \to 1$
 - pQCD predicts: $g_{\pi}(x) \sim (1-x)^3$
- Inconsistencies in Aicher & DSE results

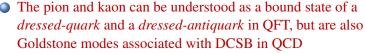




 $Q_0^2 = 0.4 \, \text{GeV}^2$

Pion/Kaon + High-priority science questions

- The NAS Assessment of a U.S. based Electron-Ion Collider identified three high-priority science questions
 - How does the mass of the nucleon arise?
 - How does the spin of the nucleon arise?
 - What are the emergent properties of dense systems of gluons?



- The dynamical breaking of chiral symmetry (DCSB) in QCD gives rise to $\sim 500\,\mathrm{MeV}$ mass splittings in hadron spectrum $[\rho-a_1,\,N-N^*(1535)]$ & massless Goldstone bosons in chiral limit $[\pi,\,K,\,\eta]$
- Therefore, understanding the nucleon mass is not sufficient
 - must also understand the mass of the pion $(u\bar{d},...)$ and kaon $(u\bar{s},...)$

Hadron Masses in QCD

 Quark/gluon contributions to masses (& angular momentum) are accessed via matrix elements of QCD's (symmetric) energy-momentum tensor

$$T^{\mu\nu} = T^{\nu\mu}, \qquad \partial_{\mu}\,T^{\mu\nu} = \partial_{\mu}\,T^{\mu\nu}_q + \partial_{\mu}\,T^{\mu\nu}_g = 0, \qquad T^{\mu\nu} = \overline{T}^{\mu\nu}_{\text{[trace]ess]}} + \widehat{T}^{\mu\nu}_{\text{[trace]}}$$

• The trace piece of $T^{\mu\nu}$ takes the form (un-renormalized)

$$T_{\mu}^{\mu} = \sum_{q=u,d,s} \underbrace{m_q \left(1 + \gamma_m\right) \overline{\psi}_q \psi_q}_{\text{quark mass term}} + \underbrace{\frac{\tilde{\beta}(g)}{2 \, g} \, F^{\mu\nu,a} F^a_{\mu\nu}}_{\text{trace anomaly}}$$

At zero momentum transfer

$$\langle p | T^{\mu\nu} | p \rangle = 2 p^{\mu} p^{\nu} \implies \langle p | T^{\mu}_{\mu} | p \rangle = 2 m^2$$

- in chiral limit entire hadron mass from gluons!
- e.g., Dmitri Kharzeev Proton Mass workshops at Temple University and ECT*
- Understanding difference in pion/kaon and proton is key to hadron masses:

$$\left\langle \pi \left| T_{\mu}^{\mu} \right| \pi \right\rangle = 2 \, m_{\pi}^{2} \stackrel{\text{chiral limit}}{\longrightarrow} 0, \qquad \left\langle N \left| T_{\mu}^{\mu} \right| N \right\rangle = 2 \, m_{N}^{2}$$

Rest Frame Hadron Mass Decompositions

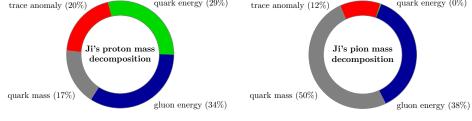
Xiangdong Ji proposed hadron mass decomposition [PRL 74, 1071 (1995); PRD 52, 271 (1995)]

$$m_p = \left. \frac{\left\langle p \left| \int d^3x \, T^{00}(0,\vec{x}) \right| \, p \right\rangle}{\left\langle p | p \right\rangle} \right|_{\text{at rest}} = \underbrace{M_q + M_g}_{\text{quark and gluon energies}} + \underbrace{M_m}_{\text{quark mass}} + \underbrace{M_a}_{\text{trace anomaly}}$$

$$M_q = \frac{3}{4} (a - b) m_p, \quad M_g = \frac{3}{4} (1 - a) m_p, \quad M_m = b m_p, \quad M_a = \frac{1}{4} (1 - b) m_p,$$

- a = quark momentum fraction, b related to sigma-term or anomaly contribution
- [See Cédric Lorcé, EPJC 78, (2018) for decomposition with pressure effects]

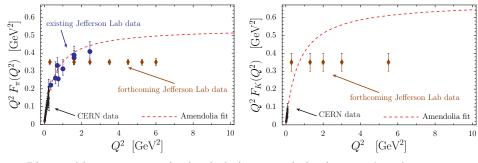
quark energy (29%)



In chiral limit $(m_q \to 0)$ pion has no rest frame $(m_\pi = 0)$ – how to interpret Ji's pion mass decomposition? Limit as $m_q \to 0$ is likely well behaved.

quark energy (0%)

What we know about the Pion and Kaon

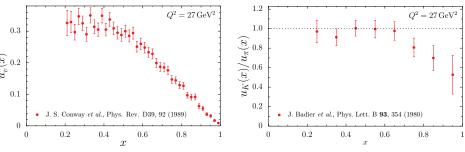


- Pion and kaon structure is slowly being revealed using: π^-/K^- beams at CERN; Sullivan type experiments at Jefferson Lab; π^- beam at Fermilab; and $e^+e^- \to \pi^+\pi^-$, K^+K^- in the time-like region
- 40 years of experiments has revealed, e.g.

•
$$r_{\pi^+} = 0.672 \pm 0.008$$
, $r_{K^+} = 0.560 \pm 0.031$, $r_{K^0} = -0.277 \pm 0.018$

- Still a lot more to learn about pion and kaon structure:
 - quark and gluon PDFs; TMDs including Boer-Mulders function; $q, g \to \pi/K$ fragmentation functions, quark and gluon GPDs; gravitational form factors

What we know about the Pion and Kaon

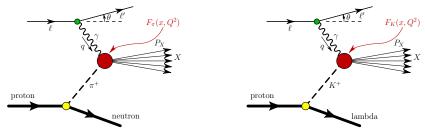


- Pion and kaon structure is slowly being revealed using: π^-/K^- beams at CERN; Sullivan type experiments at Jefferson Lab; π^- beam at Fermilab; and $e^+e^- \to \pi^+\pi^-$, K^+K^- in the time-like region
- 40 years of experiments has revealed, e.g.

•
$$r_{\pi^+} = 0.672 \pm 0.008$$
, $r_{K^+} = 0.560 \pm 0.031$, $r_{K^0} = -0.277 \pm 0.018$

- Still a lot more to learn about pion and kaon structure:
 - quark and gluon PDFs; TMDs including Boer-Mulders function; $q, g \to \pi/K$ fragmentation functions, quark and gluon GPDs; gravitational form factors

Pion & Kaon Structure at JLab and an EIC



- At Jefferson Lab and an EIC pion and kaon structure can be accessed via the so-called Sullivan processes
 - initial pion/kaon is off mass-shell need extrapolation to pole
 - existing results for form factors what about quark and gluon PDFs, TMDs, GPDs, *etc*, at an EIC?
- Explored this ideal at a series of workshops on "Pion and Kaon Structure at an Electron—Ion Collider" (PIEIC)
 - 1–2 June 2017, Argonne National Laboratory www.phy.anl.gov/theory/pieic2017/
 - 24–25 May 2018, The Catholic University of America www.jlab.org/conferences/pieic18/
- Drell-Yan also very nice way to measure pion/kaon structure

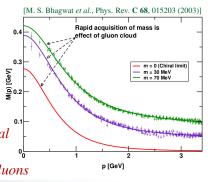
QCD's Dyson-Schwinger Equations

- The equations of motion of QCD ⇔ QCD's Dyson–Schwinger equations
 - an infinite tower of coupled integral equations
 - tractability \Longrightarrow must implement a symmetry preserving truncation
- lacktriangle The most important DSE is QCD's gap equation \Longrightarrow quark propagator

• ingredients – dressed gluon propagator & dressed quark-gluon vertex

$$S(p) = \frac{Z(p^2)}{i \not p + M(p^2)}$$

- Mass function, $M(p^2)$, exhibits dynamical mass generation, even in chiral limit
 - mass function is gauge dependent and therefore NOT an observable!
- Hadron masses are generated by dynamical chiral symmetry breaking caused by a cloud of gluons dressing the quarks and gluons



Calculating and Predicting Pion Structure

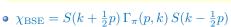
In QFT a two-body bound state (e.g., a pion, kaon, etc) is described by the Bethe-Salpeter equation (BSE):

$$=\Gamma$$
 $=$ Γ K

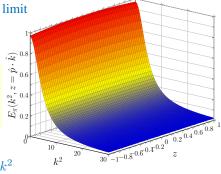
• the kernel must yield a solution that encapsulates the consequences of DCSB, e.g., in chiral limit $m_\pi=0 \& m_\pi^2 \propto m_u+m_d$

Pion Bethe-Salpeter vertex

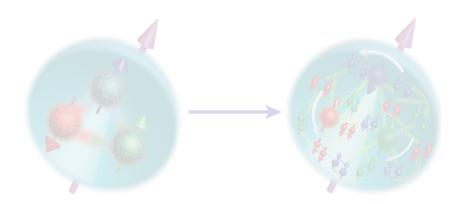
$$\begin{split} &\Gamma_{\pi}(p,k) = \gamma_5 \Big[E_{\pi}(p,k) + \not p \, F_{\pi}(p,k) \\ &+ \not k \, k \cdot p \, G_{\pi}(p,k) + i \sigma^{\mu\nu} k_{\mu} p_{\nu} \, H_{\pi}(p,k) \Big] \end{split}$$



• large relative momentum: $E_{\pi} \sim F_{\pi} \sim 1/k^2$



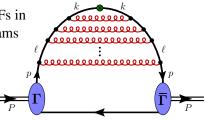
Pion & Kaon PDFs



Pion PDFs - Self-Consistent DSE Calculations

To self-consistently determine hadron PDFs in rainbow-ladder must sum all planar diagrams

$$q(x) \propto {
m Tr} \int rac{d^4 p}{(2\pi)^4} \ \overline{\Gamma}_M(p,P) \, S(p) \ imes \Gamma_q(x,p,n) \, S(p) \, \Gamma_M(p,P) \, S(p-P)$$



- **OSEs** are formulated in Euclidean space evaluate q(x) by taking moments
- The *hadron dependent* vertex $\Gamma_q(x, p, n)$ satisfies an inhomogeneous BSE
- However, can define a *hadron independent* vertex $\Lambda_q(z, p, n)$

$$\Gamma_q(x, p, n) = \iint dy \, dz \, \delta(x - yz) \, \delta\left(y - \frac{p \cdot n}{P \cdot n}\right) \Lambda_q(z, p, n)$$

$$\Lambda_{q}(z, p, n) = iZ_{2} \not n \delta(1 - z) - \iint du \, dw \, \delta(z - uw) \int \frac{d^{4}\ell}{(2\pi)^{4}} \, \delta\left(w - \frac{\ell \cdot n}{p \cdot n}\right) \\
\times \gamma_{u} \, S(\ell) \, \Lambda_{q}(u, \ell, n) \, S(\ell) \, \gamma_{v} \, \mathcal{K}_{uv}(p - \ell)$$

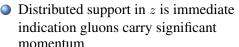
PDFs of a Dressed Quark

Hadron independent vertex has form

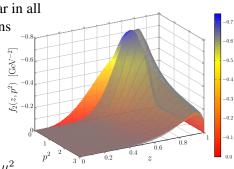
$$\begin{split} \Lambda_q(z,p,n) &= i \rlap/ n \, \delta(1-z) + i \rlap/ n \, f_1^q(z,p^2) \\ &+ n \cdot p \left[i \rlap/ p \, f_2^q(z,p^2) + f_3^q(z,p^2) \right] \end{split}$$

• the functions $f_i^q(z, p^2)$ can be interpreted as unpolarized PDFs in a dressed quark of virtuality p^2

These functions are universal – appear in all RL-DSE unpolarzied PDF calculations



- heavier s quark support nearer z = 1
- WIA $\Longrightarrow \Lambda_q(z,p,n) \propto \delta(1-z)$
- Renormalization condition means dressing functions vanish when $p^2 = \mu^2$



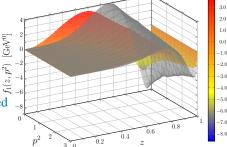
PDFs of a Dressed Quark

• Hadron independent vertex has form

$$\begin{split} \Lambda_q(z,p,n) &= i \rlap/ n \, \delta(1-z) + i \rlap/ n \, f_1^q(z,p^2) \\ &+ n \cdot p \left[i \rlap/ p \, f_2^q(z,p^2) + f_3^q(z,p^2) \right] \end{split}$$

 $\bullet \;$ the functions $f_i^q(z,p^2)$ can be interpreted as unpolarized PDFs in a dressed quark

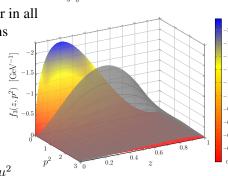
of virtuality p^2



These functions are universal – appear in all RL-DSE unpolarzied PDF calculations

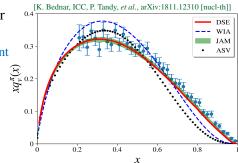
 Distributed support in z is immediate indication gluons carry significant momentum

- WIA $\implies \Lambda_q(z,p,n) \propto \delta(1-z)$
- Renormalization condition means dressing functions vanish when $p^2 = \mu^2$



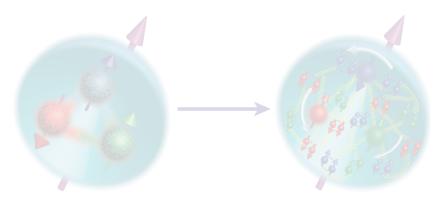
Self-Consistent DSE Results

- For pion and kaon PDFs included for first time gluons self-consistently
 - correct RL-DSE pion PDFs in excellent agreement with Conway et al. data and recent JAM analysis
 - ullet agrees with $x \to 1$ pQCD prediction
- Treating non-perturbative gluon contributions correctly pushes support of $q_{\pi}(x)$ to larger x
 - gluons remove strength from $q_{\pi}(x)$ at low to intermediate x baryon number then demands increased support at large x
 - cannot be replicated by DGLAP –
 DSE splitting functions are dressed
- Immediate consequence of gluon dressing is that gluons carry 35% of pion's and 30% of kaon's momentum





Pion & Kaon LF Wave Functions



Light-Front Wave Functions

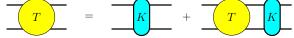
- In high energy scattering experiments particles move at near speed of light
 - natural to quantize a theory at equal light-front time: $\tau = (t+z)/\sqrt{2}$
- Light-front quantization ⇒ light-front wave functions, which have interesting properties
 - have a probability interpretation
 - frame dependence is trivial
 - boosts are kinematical conserve particle number
- BSE wave function ⇒ light-front wave functions (LFWFs); For a two-body bound state:

$$\psi(x, \boldsymbol{k}_T) = \int dk^- \ \chi_{\text{BSE}}(p, k)$$

 Numerous observables can be represented as overlaps of LFWFs, e.g., form factors, PDFs, TMDs, and GPDs

$$\left|\pi^{+}\right\rangle = \left|u\bar{d}\right\rangle + \left|u\bar{d}g\right\rangle + \left|u\bar{d}gg\right\rangle + \ldots + \left|u\bar{d}q\bar{q}\right\rangle + \left|u\bar{d}q\bar{q}g\right\rangle + \ldots$$

- Associated with each Fock-state is a number of LFWFs
 - diagonalizing the light-cone QCD Hamiltonian operator ⇒ LFWFs
 - *methods include*: discretized lightcone quantization, basis light-front quantization, and holographic QCD
- LFWFs can be projected from solutions to the Bethe-Salpeter equation



- BSE self-consistently sums an infinite number of Fock states
- in rainbow-ladder, e.g, $|\pi^+\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots$
- Obtaining LFWFs from DSE solutions of the BSE has several key features
 - in the DSEs emergent pheonmena, such as confinement and DCSB, arise through the infinite sum of diagrams
 - these effects are encoded in DSE dressed propagators and BS amplitudes, and therefore the projected LFWFs

$$|\pi^{+}\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots + |u\bar{d}q\bar{q}\rangle + |u\bar{d}q\bar{q}g\rangle + \dots$$

- Associated with each Fock-state is a number of LFWFs
 - diagonalizing the light-cone QCD Hamiltonian operator ⇒ LFWFs
 - *methods include*: discretized lightcone quantization, basis light-front quantization, and holographic QCD
- LFWFs can be projected from solutions to the Bethe-Salpeter equation

- BSE self-consistently sums an infinite number of Fock states
- in rainbow-ladder, e.g, $|\pi^{+}\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots$
- Obtaining LFWFs from DSE solutions of the BSE has several key features
 - in the DSEs emergent pheonmena, such as confinement and DCSB, arise through the infinite sum of diagrams
 - these effects are encoded in DSE dressed propagators and BS amplitudes, and therefore the projected LFWFs

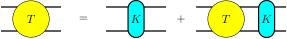
$$|\pi^{+}\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots + |u\bar{d}q\bar{q}\rangle + |u\bar{d}q\bar{q}g\rangle + \dots$$

- Associated with each Fock-state is a number of LFWFs
 - diagonalizing the light-cone QCD Hamiltonian operator ⇒ LFWFs
 - *methods include*: discretized lightcone quantization, basis light-front quantization, and holographic QCD
- LFWFs can be projected from solutions to the Bethe-Salpeter equation

- BSE self-consistently sums an infinite number of Fock states
- in rainbow-ladder, e.g, $|\pi^+\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots$
- Obtaining LFWFs from DSE solutions of the BSE has several key features
 - in the DSEs emergent pheonmena, such as confinement and DCSB, arise through the infinite sum of diagrams
 - these effects are encoded in DSE dressed propagators and BS amplitudes, and therefore the projected LFWFs

$$\left|\pi^{+}\right\rangle = \left|u\bar{d}\right\rangle + \left|u\bar{d}g\right\rangle + \left|u\bar{d}gg\right\rangle + \ldots + \left|u\bar{d}q\bar{q}\right\rangle + \left|u\bar{d}q\bar{q}g\right\rangle + \ldots$$

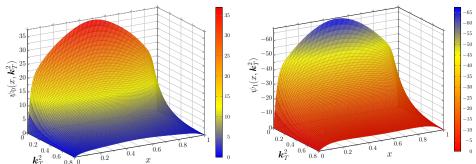
- Associated with each Fock-state is a number of LFWFs
 - diagonalizing the light-cone QCD Hamiltonian operator ⇒ LFWFs
 - *methods include*: discretized lightcone quantization, basis light-front quantization, and holographic QCD
- LFWFs can be projected from solutions to the Bethe-Salpeter equation



- BSE self-consistently sums an infinite number of Fock states
- in rainbow-ladder, e.g, $|\pi^+\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots$
- Obtaining LFWFs from DSE solutions of the BSE has several key features
 - in the DSEs emergent pheonmena, such as confinement and DCSB, arise through the infinite sum of diagrams
 - these effects are encoded in DSE dressed propagators and BS amplitudes, and therefore the projected LFWFs

Pion and Kaon LFWFs

[Chao Shi and ICC, Phys. Rev. Lett. 122, no. 8, 082301 (2019)]



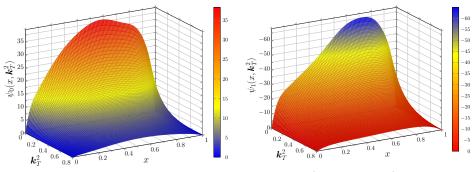
Pion has two leading Fock-state LFWFs: $\psi_{\uparrow\downarrow}(x, \boldsymbol{k}_T^2)$ & $\psi_{\uparrow\uparrow}(x, \boldsymbol{k}_T^2)$

$$\psi_0(x, \mathbf{k}_T^2) = \sqrt{3} i \int \frac{dk^+ dk^-}{2\pi} \text{Tr}_D[\gamma^+ \gamma_5 \chi(\mathbf{k}, \mathbf{p})] \delta(k^+ - x p^+); \qquad \psi_1(x, \mathbf{k}_T^2) = \dots$$

- **DSE** calculation finds broad (almost) concave functions at hadronic scales, with features at small k_T^2 driven by DCSB
 - large $\psi_{\uparrow\uparrow}(x, {\bf k}_T^2)$ indicates significant orbital angular momentum and relativistic effects in pion and kaon
 - ullet at large k_T^2 find same power-law behavior as predicted by perturbative QCD

Pion and Kaon LFWFs

[Chao Shi and ICC, Phys. Rev. Lett. 122, no. 8, 082301 (2019)]



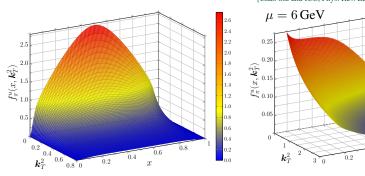
Pion has two leading Fock-state LFWFs: $\psi_{\uparrow\downarrow}(x, \boldsymbol{k}_T^2)$ & $\psi_{\uparrow\uparrow}(x, \boldsymbol{k}_T^2)$

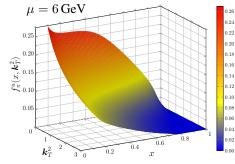
$$\psi_0(x, \mathbf{k}_T^2) = \sqrt{3} i \int \frac{dk^+ dk^-}{2\pi} \text{Tr}_D [\gamma^+ \gamma_5 \chi(\mathbf{k}, p)] \delta(k^+ - x p^+); \qquad \psi_1(x, \mathbf{k}_T^2) = \dots$$

- DSE calculation finds broad (almost) concave functions at hadronic scales, with features at small k_T^2 driven by DCSB
 - \bullet large $\psi_{\uparrow\uparrow}(x,{\pmb k}_T^2)$ indicates significant orbital angular momentum and relativistic effects in pion and kaon
 - ullet at large k_T^2 find same power-law behavior as predicted by perturbative QCD

Pion's T-even TMD

[Chao Shi and ICC, Phys. Rev. Lett. 122, no. 8, 082301 (2019)]



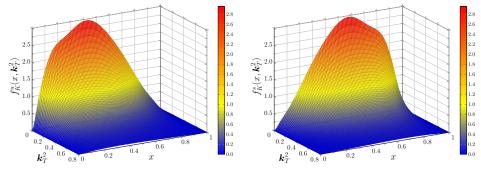


Using pion's LFWFs straightforward to make predictions for pion TMDs

$$f(x, \mathbf{k}_T^2) \propto \left| \psi_{\uparrow\downarrow}(x, \mathbf{k}_T^2) \right|^2 + \mathbf{k}_T^2 \left| \psi_{\uparrow\uparrow}(x, \mathbf{k}_T^2) \right|^2$$

- numerous features inherited from LFWFs: TMDs are broad functions as a result of DCSB and peak at zero relative momentum (x = 1/2)
- evolution from model scale ($\mu = 0.52 \,\text{GeV}$) to $\mu = 6 \,\text{GeV}$ results in significant broadening in $\langle k_T^2 \rangle$, from 0.16 GeV² to 0.69 GeV²
- Need careful treatment of gauge link to study pion Boer-Mulders function

Kaon's T-even TMD



Using pion's LFWFs straightforward to make predictions for pion TMDs

$$f(x, \boldsymbol{k}_T^2) \propto \left| \psi_{\uparrow\downarrow}(x, \boldsymbol{k}_T^2) \right|^2 + \boldsymbol{k}_T^2 \left| \psi_{\uparrow\uparrow}(x, \boldsymbol{k}_T^2) \right|^2$$

- numerous features inherited from LFWFs
- TMDs are broad functions as a result of DCSB and with significant flavor breaking effects
- **•** TMDs satisfy: $f_K^s(x, k_T^2) = f_K^u(1 x, k_T^2)$; $f(x, k_T^2) \to x^2(1 x)^2/k_T^4$
- In general both pion and kaon LFWFs do not factorize in x and k_T^2

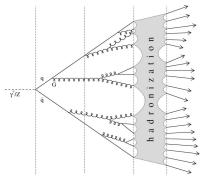
Probing Transverse Momentum

lead		quark polarization			
tw	ist	unpolarized [U]	longitudinal [L]	transverse [T]	_
tion	U	$f_1 = igodots$ unpolarized		$h_1^{\perp} = \bigcirc \bigcirc \bigcirc \bigcirc$ Boer-Mulders	$\ell \qquad \qquad p_h, s_h$ $q \qquad \qquad p_h, s_h$ $q \qquad \qquad k, s' \qquad p_q^{h(z,s',s_h)}$
polarization	L		$g_1 = \longrightarrow - \longrightarrow$ helicity	$h_{1L}^{\perp} = $	
nucleon po	т	$f_{1T}^{\perp} = \bigodot_{Sivers}^{lack} - \bigodot_{Sivers}$	$g_{1T}^\perp = \bigodot_{\text{worm gear 2}}^{\blacktriangle} - \bigodot_{\text{gear 2}}^{\spadesuit}$	$h_1 = igotimes_{\mathrm{transversity}}^{igstyle*} \ h_{1T}^{ot} = igotimes_{\mathrm{pretzelosity}}^{igstyle*} \ .$	P,S $q(x,S,s)$

- Measuring the pion/kaon TMDs will be a challenge, however progress can be made now by studing the $q \to \pi/K$ TMD fragmentation functions
- Fragmentation functions are particularly important and interesting
 - potentially fragmentation functions can shed the most light on confinement and DCSB because they describe how a fast moving (massless) quark or gluon becomes a tower of hadrons
- Also interesting tool with which to probe color entanglement at an EICover what length scales can colored correlations be observed?

Probing Transverse Momentum

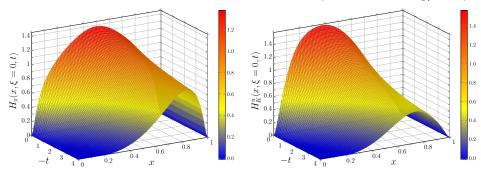
leading twist		quark polarization				
		unpolarized [U] longitudinal [L]		transverse [T]		
tion	U	$f_1 = igodots_{ ext{unpolarized}}$		$h_1^{\perp} = \bigcirc \bigcirc \bigcirc$ Boer-Mulders		
olariza	L		$g_1 = \bigcirc \rightarrow \bigcirc - \bigcirc \rightarrow$	$h_{1L}^{\perp} = $		
nucleon polarization	т	$f_{1T}^{\perp} = \bigodot$ Sivers	$g_{1T}^{\perp} = \bigodot_{\text{worm gear 2}}^{\bullet} - \bigodot_{\text{gear 2}}^{\bullet}$	$h_1 = \bigodot_{\mathrm{transversity}}^{lack} - \bigodot_{\mathrm{transversity}}^{lack}$ $h_{1T}^{ot} = \bigodot_{\mathrm{pretzelosity}}^{lack} - \bigodot_{\mathrm{pretzelosity}}^{lack}$		



- Measuring the pion/kaon TMDs will be a challenge, however progress can be made now by studing the $q \to \pi/K$ TMD fragmentation functions
- Fragmentation functions are particularly important and interesting
 - potentially fragmentation functions can shed the most light on confinement and DCSB because they describe how a fast moving (massless) quark or gluon becomes a tower of hadrons
- Also interesting tool with which to probe color entanglement at an EIC
 - over what length scales can colored correlations be observed?

Pion and Kaon GPDs

[Chao Shi and ICC, forthcoming publication]



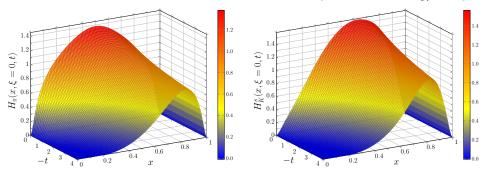
Straightforward to make predictions for pion and kaon GPDs from overlaps of LFWFs – only one type of GPD at leading twist

$$H_{\pi}(x,0,t) = \int d\mathbf{k}_T \left[\psi_0(x,\hat{\mathbf{k}}_T) \psi_0(x,\mathbf{k}_T) + (\hat{k}_1 + i\hat{k}_2)(k_1 - ik_2) \psi_1(x,\hat{\mathbf{k}}_T) \psi_1(x,\mathbf{k}_T) \right]$$

- access to DGLAP region $[x > \xi]$ only with leading Fock state
- impossible to self-consistently respect polynomiality with truncated Fock space
- Our Fock-state expansion is in terms of dressed quarks and gluons
 - as momentum transfer t increases dressing of quarks and gluons stripped away

Pion and Kaon GPDs

[Chao Shi and ICC, forthcoming publication]



 Straightforward to make predictions for pion and kaon GPDs from overlaps of LFWFs – only one type of GPD at leading twist

$$H_{\pi}(x,0,t) = \int d\mathbf{k}_T \left[\psi_0(x,\hat{\mathbf{k}}_T)\psi_0(x,\mathbf{k}_T) + (\hat{k}_1 + i\hat{k}_2)(k_1 - ik_2)\psi_1(x,\hat{\mathbf{k}}_T)\psi_1(x,\mathbf{k}_T) \right]$$

- access to DGLAP region $[x > \xi]$ only with leading Fock state
- impossible to self-consistently respect polynomiality with truncated Fock space
- Our Fock-state expansion is in terms of dressed quarks and gluons
 - ullet as momentum transfer t increases dressing of quarks and gluons stripped away

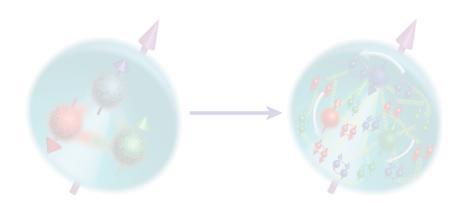
DSEs + Higher Fock States

- From existing DSE ingredients can project out higher Fock states
- For example, the $|q\bar{q}|q\rangle$ Fock state is given by

$$\psi_{\lambda_1\lambda_2\lambda_3}(x_1,\!x_2,\!\pmb{k}_{1T},\!\pmb{k}_{2T}) \sim \int \frac{dk_1^- dk_2^-}{(2\pi)^2} \; \bar{u}(x_1P^+,\!\pmb{k}_{1T},\!\lambda_1)\gamma^+\chi^\mu(k_1,\!k_2;\!P)\gamma^+v(x_2P^+,\!\pmb{k}_{2T},\!\lambda_2) \, \varepsilon_\mu^*(\lambda_3)$$

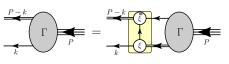
- $\bullet~$ for a pion there are nine 5-dimensional LFWFs associated with $|q\bar{q}~g\rangle$ Fock state
- Key question: When is a leading Fock-state approximation reliable?
 - leading Fock state dominates at (very) large x and (very) large Q^2
 - can generate numerous higher Fock states using, e.g., DGLAP evolution however non-perturbative content is missing
- Increasing difficult to calculate these higher Fock-state LFWFs and their impact on observables need to use full BSE solutions

Nucleon PDFs

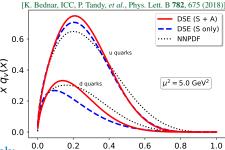


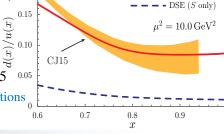
Spin-Independent PDFs

Solve Poincaré covariant Faddeev eqn for nucleon bound state:



- key approximation is that the nucleon consists of quark + dynamical diquark
- approximation is known to work extremely well, e.g., masses, form factors, etc
- QCD predicts $q(x) \sim (1-x)^3$ as $x \to 1$; our result is $q(x) \sim (1-x)^5$
 - quark-diquark approximation breaks down at (very) large x
- Find d/u in good agreement with CJ15 0.0
 ratio is very sensitive to diquark correlations
- lacktriangle At what x does q + qq break down?





х

0.20

DSE (S + A)

Conclusions

- For pion and kaon PDFs included for first time gluons self-consistently
 - correct RL-DSE pion PDFs in excellent argeement with Conway *et al.* data and recent JAM analysis
 - $\bullet \;$ agrees with $x \to 1$ pQCD prediction
- Using DSE solutions to the BSE we determined the leading Fock-state LFWFs for the pion and kaon
 - using these LFWFs straightforward to determine FFs, PDFs, TMDs, GPDs, etc
 - key advantage of DSE method is BSE sums an infinite number of Fock states

 LFWFs encapsulate effects from emergent phenomena: confinement & DCSB
- Much work remains in experiment and theory to understand the pion and kaon

