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Quantum Simulation of Fermionic Systems: towards a QCD-inspired method for

existing and near-term quantum computer devices.

A meson is a ”quantum circuit”

Figure: Ry rotation by θ on qubit 1,
followed by CNOT gate, and possibly a
B gate, corresponding to a basis
change, which is necessary for some
Pauli terms in the Hamiltonian

It is important to emphasise that
whatever model/approximation
to QCD one favours, it should
obey to three conditions:

It has to “contain”
confinement,

It has to be chiral
symmetric and, despite
that,

possess a mechanism for
spontaneous breaking of
chiral symmetry (SχSB).
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Introduction

There is a class of models which can address, at one stroke, all the
three above conditions: they are chiral symmetric, they display
SχSB, and, on top, they allow for chiral restoration. This class of
models can be thought as to solve QCD in the Gaussian
approximation for gluonic cummulants. This approximation
becomes exact in the limit of heavy quarks.

This talk is divided into three section.

1 A brief description of qubits and quantum gates;

2 an introduction to the Jordan-Wigner and Bravyi-Kitaev
transformations;

3 a summary of the physics of quark quartic interactions and its
relation with SχSB;

4 a brief presentation of the actual quantum computation.

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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Qubits and quantum gates

1 The state space for a single qubit is given by
{a|0〉+ b|1〉} , |a|2 + |b|2 = 1.

2 a|0〉+ b|1〉 ↔ c {a|0〉+ b|1〉} , |c |2 = 1 describe the same qubit;
{a|0〉+ b|1〉, a′|0〉+ b′|1〉} with a/b = e iϕ|a|/|b| represent two
different qubits;

3 the standard basis for n qubits is a 2n basis:
{|0, 0...0〉, |0..., 0, 1〉, |0, ..., 1, 0〉, |1, ..., 1〉} ⇔ |0〉, |1〉, ...|2n − 1〉;

4 to a single qubit corresponds one complex number. To a n-qubit we
have 2n − 1 complex numbers. Since 2n − 1� n, most of n-qubits
cannot be described as a tensor product of separated n qubits

Definition

States that cannot be described by tensor products of n single
qubit states are called entangled states.

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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For instance the entangled Bell state |Φ+〉,

|Φ+〉 =
1√
2
{|00〉+ |11〉} 6= {a1|0〉+ a2|1〉} ⊗ {b1|0〉+ b2|1〉}

cannot be described by the tensor product of two separate single qubits.
The notion of entanglement is not absolute: a system of n-qubits can be
entangled in terms of some sub-registers and not in relation to others.
Example: |Ψ〉 =

1

2
(|0〉1|0〉2|0〉3|0〉4 + |0〉1|1〉2|0〉3|1〉4 + |1〉1|0〉2|1〉3|0〉4 + |1〉1|1〉2|1〉3|〉4)

=
1√
2

(|0〉1|0〉3 + |1〉1|1〉3)⊗ 1√
2

(|0〉2|0〉4 + |1〉2|1〉4) ,

is separable in relation of sub-registers {1,3} and {2,4}but
entangled in relation to sub-registers {1,2} and {3,4}.
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In the standard basis, the operator

(
a b
c d

)
is given by,

a|0〉〈0|+ b|0〉〈1|+ c |1〉〈0|+ d |1〉〈1|.
Pauli operations: The Pauli transformations are the most commonly
used single-qubit transformations

I = |0〉〈0|+ |1〉〈1| =

(
1 0
0 1

)
; X = |1〉〈0|+ |0〉〈1| =

(
0 1
1 0

)
;

Y = −|1〉〈0|+ |0〉〈1| =

(
1 0
0 1

)
; Z = |0〉〈0| − |1〉〈1| =

(
1 0
0 −1

)
The Hadamard Transformation

H = |0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1| =

(
1 1
1 −1

)
The standard basis is |0〉 ⇒

[
1
0

]
, |1〉 ⇒

[
0
1

]
J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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The C-NOT Gate (controlled not gate). If the first qubit is 0 leaves
the second qubit unchanged, if not flips the second qubit:

CNOT = |0〉〈0| ⊗ I + |1〉〈1| ⊗ X

= |0〉〈0| ⊗ (|0〉〈0|+ |1〉〈1|) + |1〉〈1| ⊗ (|1〉〈0|+ |0〉〈1|)
= |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11|

Figure: Gate C-NOT

C-NOT entangles a system that was
separable

CNOT
1√
2

(|0〉+ |1〉)⊗ |0〉 =

=
1√
2

(|00〉+ |11〉),

and because it is its own inverse it can

also disentangle an entangled state

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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General single qubits transformations

Figure: Gate C-Q

In general we may have a C-Q gate:

ΛQ = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Q, so that

CNOT =ΛX

All the single-qubit transformations can be written as
combinations of phase shifts e iδI and,

R(β) =

(
cos(β) sin(β)
− sin(β) cos(β)

)
, T (α) =

(
e Iα 0
0 e−Iα

)
Any Operator Q = e iδIT (α)R(β)T (γ)
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Mapping fermion occupation numbers and qubits

Local fermion modes

the fermion creation and annihilation operators act on local fermion
modes (LFM ∈ the fock space F) as follows:

â|n0, · · · , nj−1, 1, nj+1, · · · , nm−1〉 =

= (−1)
∑j−1

s=0 |n0, · · · , nj−1, 0, nj+1, · · · , nm−1〉
â|n0, · · · , nj−1, 0, nj+1, · · · , nm−1〉 = 0

With the usual commutation rules
{
â†j , âk

}
= δjk , {âj , âk} = 0

We can identify the LFM with a qubit Hilbert space H:

|n0, n1, · · · , nm−1〉 ⇒ |n0〉 ⊗ |n1〉 ⊗ · · · ⊗ |nm−1〉, ni = {0, 1}

But it is different to operate on the qubit Hilbert space and on the

LFM Fock space: the order matters!

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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A Universal set of LFM gates
Jordan-Wigner and Bravyi-Kitaev operators

Using â†â = (1− σz)/2, we can build the following transcriptions of

qubit operations into Fock space operators: Λe iϕ, Λσz :

It is a simple question of calculations to see that,

Λe iϕ =

(
1 0
0 e iϕ

)
⇒ exp

{
iϕâ†0â0

}
,

Λσz =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⇒ exp
{
iπâ†0â0â

†
1â1

}

Λσz : |00〉 → |00〉, |10〉 → |10〉, |10〉 → |10〉, |11〉 → (−1)|11〉
So a two LFM operator X̂ {j , k} corresponds to a two qubit
operator X [j , k] as follows (D[l ,m] = Λσz [l ,m]):

X̂ {j , k} = D[k − 1, k] · · ·D[j + 1, k]X [j , k]D[j + 1, k] · · ·D[k − 1, k]

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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Jordan-Wigner and Bravyi-Kitaev operators

Jordan-Wigner operators

Qubit creation and annihilation operators can be described as,
Q̂† = |1〉〈0| = 1

2 (σx − iσy ), |; Q̂− = |0〉〈1| = 1
2 (σx + iσy ) These

operators act on local qubits and do not know about the Pauli
statistics. This information for a given Q̂i is stored in al qubits
i < j . This set is known as the Parity (I dislike this name) set P(i).
the set of qubits that determines the global commutation number
pi =

∑
j<i nj , with nj the LFM in site i: {0, 1}. Then we have:

â†i = σ− ⊗j<i σz i = σ− ⊗ σzP (i); âi = σ+ ⊗j<i σz i = σ+ ⊗ σzP (i)

{σ+, σ−} = I .

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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Bravyi-Kitaev operators

We look for a transformationβ2m =


β

2m−1 0

0
← 1→ β

2m−1

 ; β1 = 1

Example (4 qubits): 2m = 4→ m = 2⇒ β2 =
 1 0

1 1




1 0 0 0
1 1 0 0
0 0 1 0
1 1 1 1



f1
f2
f3
f4

 =


q1 = f1
q2 = f1 + f2
q3 = f3
q4 = f1 + f2 + f3 + f4

 .

The update set U(j) = {qn} , n > j to be updated when we change
LFM fj . Ex: U(1) = {2, 4} ⇒ â1 = σ+

1 σx 2σx 4.
U(3) = {4} ⇒ â3 ' σ+

3 σx 4 ⇒ σz2σ
+
3 σx 4 ⇒ Parity Set

even qj : â2 = 1
2 (σz1σx 2 + Iσy 2)σx 4, â4 = 1

2 (σz2σz3σx 4 + iσy 4)

odd qj Needs another set the Flip Set, the Flip Set ⊂ Parity Set.

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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II – Microscopic quark description of Hadrons

It is important to emphasise that whatever model/approximation
to QCD one favours to address hadronic states, it should obey to
three conditions:

It has to ”contain” confinement,

It has to be chiral symmetric and, despite that,

possess a mechanism for spontaneous breaking of chiral
symmetry (SχSB). There is a class of models which can
address, at one stroke, all the three above conditions: they are
chiral symmetric, they display SχSB, and, on top, they allow
for chiral restoration. This class of models can be thought as
to address QCD in the Gaussian approximation for gluonic
cummulants.
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the Hamiltonian we will be using, reads,

Heff. =

∫
dxψ̄(x, t)

K︷ ︸︸ ︷
(−iα · ∇+ βm)ψ(x, t)−

− 1

2

∫
dxdyρaµ(x, t)Vab

µν(x− y)ρbν(y, t), (1)

with,
ρaµ(x, t) = ψ̄(x, t)γµ

λa

2 ψ(x, t), Vab
µν(x− y) = gµ0gν0δ

abV0(|x− y|)

and,

ψfc(x, t) =
∑
s

∫
dk

(2π)3
[us(k)bfcs(k)e−ik0t +vs(k)d †fcs(−k)e ik0t ]e ik·x,

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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Bogolioubov Transformations

ψfc can be thought as an inner product between a Fock space

F =
{
b̂, d̂

}
and an Hilbert space H = {u, v}:

ψfc = {u(k), v(k)} ·
{
b̂, d̂†

}
= {u(k), v(k)}R(φ)TR(φ)

{
b̂, d̂†

}
R(φ) =

[
B̂

D̂+

]
s

=

[
cosφ − sinφMss′

sinφM?
ss′

cosφ

][
b̂

d̂+

]
s′

With, the 3P0 Coupling (Parity +):

Mss′ = −
√

8π
∑
mlms

[
1 1 |0
ml ms |0

]
×
[

1/2 1/2 |1
s s

′ |ms

]
k̂1ml

|1
2
, s〉〈1

2
, s
′
|

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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The new Vacuum is:

|0̃ >= Exp
{
Q̂+

0 − Q̂0

}
|0 >

Q̂+
0 (Φ) =

∑
cf

∫
d3p φ(p)Mss′ (p̂)b̂+

fcs(p) d̂+
fcs′

(−p)

So the new spinors associated with the new Fock space must read[
U
V

]
p,s

=

[
cosφ(p) − sinφ(p) M∗

ss′
(p̂)

sinφ(p) Mss′ (p̂) cosφ(p)

] [
u
v

]
p,s

.

Therefore,

ψfc(x, t) =
∑
s

∫
dk

(2π)3
[Us(k)Bfcs(k)e−ik0t+Vs(k)D †fcs(−k)e ik0t ]e ik·x,

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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Mass Gap equation

In general, after Wick contractions, any quartic Hamiltonian
H = Ĥnormal [φ] + Ĥanomalous [φ] with Ĥ|0 >= Ĥanomalous [φ]|0 > 6= 0.

Ĥ2 [normal ] =
∫
d3p E (p)

[
b̂+
fscp)b̂fsc(p) + d̂+

fsc(−p)d̂fsc(−p)
]
,

with E (p) = A(p) sinϕ+ B(p) cos(ϕ(p))

Ĥ2 [anomalous] =∫
d3p [A[p]Sϕ)− B[p]Cϕ]×

[
Mss′ b̂

+
fsc(p)d̂+

fsc(−p) + h.c .
]

Find function [ϕ(p)], such that [A[p] sin(ϕ)− B[p] cos(ϕ)] = 0

A(p) = E (p) sin(ϕ(p));B(p) = E (p) cos(ϕ(p))

Sf = i

/p−m−(A(p)−m)− (p − B(p)/̂p︸ ︷︷ ︸
Σ(p)

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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We have several ways of obtaining the mass Gap
1 Variation in ϕ:,

It is the same as to cut the fermion
propagators Sφ,

H 2
A = 0+ +

+ = 0Sδφ φ

2 The full propagator S(p) is given by the Dyson series

�

S

=

�

S

0

+

�

S

0

S

0

+

�

�

S

0

S

0

S

0

+ : : : =

� �

�

S

0

+

�

S

0

S

�

�

=

�

�

S

0

+

�

+ : : : =

�

S

3 Ward identity i(p − p′)µΓµ(p, p′) = S−1
f (p′)− S−1

f (p), with,

Γµ(p, p
′
) = γµ+i

∫
d4q

(2π)4 K (q)ΩS(p
′
+q)×Γµ(p

′
+q, p+q)ΩS(p

′
+q)
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Bethe-Salpeter Equations

Using the diagrammatic blocks we can also construct
Bethe-Salpeter equations (BS) for the mesonic states, namely

Φ[+]
s1s2

(k,0)=

=
∫

d4k′
(2π)4 Sq(~k ′,M2 +w) Sq̄(−~k ′,M2 −w)×

×[ūα
s1

(~k)Γαβu
β
s1

(~k ′)] [v̄γ
s4

(~k ′)Γγδv
δ
s2

(~k)]×

×[+iV(~k−~k ′)] Φ[+]
s3s4

(~k ′)

-∫
d4k′
(2π)4 Sq(~k ′,−M

2 +w) Sq̄(−~k ′,−M
2 −w)×

×[ūα
s1

(~k)Γαβv
β
s1

(~k ′)] [ūγ
s4

(~k ′)Γγδv
δ
s2

(~k)]×

×[−iV(~k−~k ′)] Φ[−]
s3s4

(~k ′),

-

-

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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If we integrate out the quark energies and then proceed to integrate

it, from the left, with
∫

d3k
(2π)3 Φ[+]†

s1s2
(k, 0) we get,∫

d3k

(2π)3

[
Φ[+]†

s1s2
(k)(Eq(k) + Eq̄(k))Φ[+]

s1s2
(k)+

+

∫
d3k

(2π)3

d3k ′

(2π)3
Φ[+]†

s1s2
(k)Vs1s2;s3s4 (k , k ′)Φ[+]

s3s4
(k ′)

]
= M.

Sums in the spin indices are understood and Vs1s2;s3s4 (k, k ′) stands
for [ūα

s1
(~k)Γαβu

β
s1

(~k ′)] [−iV(~k−~k ′)] [v̄γ
s4

(~k ′)Γγδv
δ
s2

(~k)]

Then, provided we define the constants,

U =
∫

d3k
(2π)3

[
Φ[+]†

s1s2
(k)(Eq(k) + Eq̄(k))Φ[+]

s1s2
(k)
]

V =
∫

d3k
(2π)3

d3k′

(2π)3 Φ[+]†
s1s2

(k)Vs1s2;s3s4 (k , k ′)Φ[+]
s3s4

(k ′),

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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An effective qubit equivalent Hamiltonian

we can build, in an abstract space of qubits |q1q2...〉, an
Hamiltonian that for the sub-sector |q1, q2〉 has the same
eigenvalues than the Hamiltonian:

Ĥ =
1

2
U(â†1â1 + â†2â2) + V (â†1â1â

†
2â2),

where â†1|0, q2〉 = |1, q2〉 and â1|1, q2〉 = |0, q2〉. A similar expression
for â2, with â1 acting as a representative for the quark and â1 for
the antiquark.

We can substitute the integrals by a grid of sums which will be
tantamount to introduce a ”grid pair of qubit operators”

Once this is done we can replace the qubit operators by, either

Jordan-Wigner operators or Bravyi-Kitaev operators and use, if

needed be, quantum computing to evaluate them.

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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Example of a calculation

As a generic example let’s consider

Hq1q̄2

eff. = Hconst. +
1

2
Vq1

(
a†1a1 + a†2a2

)
+

1

2
Vq̄2

(
a†4a4 + a†3a3

)
+

+
1

2
U
(
a†1a1a

†
3a3 + a†2a2a

†
4a4

)
+ Vcross (a1a4a3a2) + Vcross

(
a†1a
†
4a
†
3a
†
2

)
.

After a B-K transformation we get,

HBK = Hconst. +
1

8
(2(U + 2(Vq1 + Vq2 ))−

− (U + 2Vq1 )(σz1 + σz1σz2)− (U + 2Vq2 )(σz3 + σz2σz3σz4)+

+ U(σz1σz3 + σz1σz3σz4)−
− Vcross {(σx 1σz2σx 3 + σx 1σx 3σz4 + σx 1σz2σx 3σz4 + σx 1σx 3)−

−(σy 1σz2σy 3 + σy 1σy 3σz4 + σy 1σz2σy 3σz4 + σy 1σy 3)
}

)

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems
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qubits 2 and 4 are only acted upon by σz . Therefore these two
qubits can be removed and the Hamiltonian and eigenstate can be
simplified to:

H̃BK = Hconst. +
1

4
(U + 2(Vq1 + Vq2 )

− (U + 2Vq1 ) σz1 − (U + 2Vq2 ) σz3 + U σz1σz3

+ 2Vcross

(
σy 1σy 3 − σx 1σx 3

)
)

with, |ψ̃λ〉 = a|00〉+ b|11〉, |a|2 + |b|2 = 1
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Qiskit Explanation

Let us choose a given θ, say,π/6. Then |ψ̃λ〉 =
√

3
2 |00〉+ 1

2 |11〉
〈00|σz 1 σz 3|00〉 = 〈0|σz 1|0〉〈0|σz 3|0〉) =
1× 1 = 1
〈11|σz 1 σz 3|11〉 = −1× −1 = 1

So in this case the average of the 8192 times will

be 1 no matter what.

σx 1 σx 3 case ( σy 1 σy 3 case is similar). Let S = B† be the unitary
operator that changes basis from Z to X, then:
〈ψ̃λ|X |ψ̃λ〉 ⇒ 〈ψ̃λ|(SS†)X (SS†)|ψ̃λ〉 = 〈ψ̃λ|S(S† X S)S†|ψ̃λ〉 = 〈ψ̃x |Z |ψ̃x 〉

After B gate:
|ψ̃λ〉 =

√
3

2
|00〉 + 1

2
|11〉 → 1+

√
3

4
|00〉 +

√
3−1
4
|10〉 +

√
3−1
4
|01〉 + 1+

√
3

4
|11〉 ⇒

⇒ |ψ̃λ〉 = 1+
√

3
4
|00〉xx + 1+

√
3−1

4
|10〉xx +

√
3−1
4
|01〉xx +

√
3+1
4
|11〉xx

〈00zz |σx 1 σx 3|00zz〉 = 〈00xx |σz1 σz3|00xx〉 . . .
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Testing Quantum Computation
m Hconst. Vq1

Vq2
U Vcross

Υ 9.280 9.280 2.320 2.320 2.320 0.000
B∗c 6.155 9.280 0.759 2.320 1.540 4.919
B∗s 5.312 9.280 0.250 2.320 1.285 5.571
J/Ψ 3.038 9.280 0.759 0.759 0.759 7.293
D∗s 2.072 9.280 0.759 0.250 0.505 7.929
φ 1.000 9.280 0.250 0.250 0.250 8.647

Table: Test parameters. They are not physical but merely used here
as a demonstration set for quantum computing.

By measuring this state in the appropriate basis several times, we

can determine the expectation value of each Pauli term in the

Hamiltonian, one at a time (we have the 5 terms σz1, σz3, σz1σz3,

σx 1σx 3, and σy 1σy 3Y). Each expected value was calculated using

8192 measurements. In order to minimize the necessary runs in the

quantum device, the same runs were used for all the particles

J.E.F.T. Ribeiro Quantum Simulation of Fermionic Systems



Introduction
Qubits and quantum gates

Mapping fermion occupation numbers and qubits
II – Microscopic quark description of Hadrons

Quantum Computing

Testing Quantum
Computation
Fig:

(a) 〈H〉(θ) using the exact solution (lines), and the

experimental solution (points), for different

particles. The black dashed line roughly indicates

the position of the expected minima. (b) Deviation

from exact result, with errorbars indicating the

standard deviation of 〈H〉(θ), associated with the

stochasticity of the measured results. (c)

Comparison of the exact (solid lines) and

experimental (points) results of the expected value

of each Pauli term composing the Hamiltonian.

The deviation can be mostly explained by the effect

of quantum device errors (dashed lines).
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