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● Perturbation theory has proven to be an extremely successful tool 
for investigating problems in particle physics 

   

● This emphasises the need for a non-perturbative approach! 

             → Local QFT is one such approach

1. Local QFT: an axiomatic approach

But by definition this procedure 
is only valid in a weakly 

interacting regime

→ Form factors? 
→ Parton distribution functions?
→ Convergence of perturbative series?
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● Local QFT approaches are defined by a core set of axioms:

A. Wightman

R. Haag

[R. F. Streater and A. S. Wightman, PCT, 
Spin and Statistics, and all that (1964).]

 [R. Haag, Local Quantum 
Physics, Springer-Verlag (1996).]

1. Local QFT: an axiomatic approach
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● The central idea with Local QFT is that these axioms are physically motivated

“The theory is invariant 
under Poincaré 

transformations”

1. Local QFT: an axiomatic approach
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“Energy is bounded from 
below – the theory is 

stable”

1. Local QFT: an axiomatic approach

● The central idea with Local QFT is that these axioms are physically motivated
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“The vacuum state is 
unique and looks the 
same to all observers”

1. Local QFT: an axiomatic approach

● The central idea with Local QFT is that these axioms are physically motivated
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“Quantum fields φ are 
operator-valued 
distributions”

1. Local QFT: an axiomatic approach

● The central idea with Local QFT is that these axioms are physically motivated
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“Connect the 
permitted physical 
states with the field 
degrees of freedom”

1. Local QFT: an axiomatic approach

● The central idea with Local QFT is that these axioms are physically motivated
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“Causality!”

1. Local QFT: an axiomatic approach

● The central idea with Local QFT is that these axioms are physically motivated
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2. Correlation functions in local QFT

● Despite their simplicity, the axioms of local QFT have many important 
consequences:

→ Correlation functions                                 are distributions

→ Reconstruction Theorem – a QFT can be reconstructed from        
    knowledge of all the correlators

→ Spin-statistics theorem, CPT theorem, connection of Minkowski and 
    Euclidean QFTs, existence of scattering states, ...  

● Things become more complicated in gauge theories!

“Local Gauss law” (i) Preserve positivity, lose locality    
    (e.g. Coulomb gauge QED)

(ii) Preserve locality, lose positivity     
     (e.g. Landau gauge QCD)
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● For the remainder of this talk we will focus on option (ii)
● The local Gauss law implies that all charged fields are non-local

→ To recover locality one modifies this equation, lifting this restriction, 
    but maintains the constraint for physical states

● This procedure necessarily introduces both zero and negative norm 
(ghost) states into the theory!

● Modifies QFT axioms →  Pseudo-Wightman approach [Bogolubov et al.] 

Gupta-Bleuler (QED)

BRST (QCD) 

[N. N. Bogolubov, A. A. Logunov, A. I. Oksak and I. T. Todorov, 
General Principles of Quantum Field Theory, (1990).]

2. Correlation functions in local QFT
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● In the Pseudo-Wightman approach many of the previous axioms are 
maintained, except now the full space of states is not positive-definite

● Determining the effect that this change has on the characteristics of 
QFTs is essential for unravelling the dynamics of gauge theories

● In particular, this can help in understanding the non-perturbative 
structure of QCD correlators  

  

QCD correlators

 Dyson-Schwinger, Bethe-Salpeter equations, FRGEs

 Enter into the calculation of bound-state observables; 
meson spectra, decay constants, glueball masses,…

 QCD phase diagram: effects of finite temperature and 
density 

 Confinement

2. Correlation functions in local QFT
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→ What is the general structure of a Pseudo-Wightman            
    correlation function?

● Due to the Lorentz transformation property of the fields the Fourier 
transform of any field correlator can be written    

● The spectral condition implies that the Lorentz invariant components 
must vanish outside the (closed) forward light cone (p2 0, ≥ p0 0)≥

Spectral function

Lorentz covariant 
polynomial

Lorentz invariant 
component

Purely singular component

2. Correlation functions in local QFT
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● For non-gauge theories satisfying the standard local QFT axioms, 
the correlation strength between clusters of fields always decreases 
with space-like separation R = -(x-y)2    [Araki; Araki, Hepp, Ruelle]

→ This is called the cluster decomposition property (CDP)

● States therefore become increasingly decorrelated the further apart 
they are separated! [H. Araki, Ann. Phys. 11, 260 (1960).]

[H. Araki, K. Hepp and D. Ruelle,  
Helv. Phys. Acta 35, 164 (1962).]

Φ1
R→∞x . Φ2 y.

3. Confinement and the CDP
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● But what about QCD? If the CDP held this would allow one to pull 
apart coloured states!

● It turns out though that the CDP can be violated in QFTs 
satisfying the Pseudo-Wightman axioms [Strocchi 1976]:

 
● Depends on whether the theory has a mass gap, and the value of 

the positive integer parameter N                                              
      → for the CDP to be violated it is necessary that N > 0 

● N is related to the boundedness properties of the corresponding 
momentum space correlator [PL, 1511.02780] 

[F. Strocchi, Phys. Lett. B 62, 60 (1976).]

3. Confinement and the CDP
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● Any correlation function is determined by its spectral functions ρ

→ The value of N must therefore be related to the type of             
    components appearing in ρ

● Besides ordinary massive poles δ(s-m2) and continuum contributions, 
spectral functions can have more singular properties in the Pseudo-
Wightman case

● In particular, ρ(s) can possess generalised pole terms of the form:  

● These components lead to a stronger IR singular behaviour 
● The existence of these delta-derivative components is sufficient to 

prove that N > 0  [PL, 1511.02780]

    → Are these components present in QCD correlators?    

 

3. Confinement and the CDP
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4. The gluon propagator   

● A QCD correlation function of particular interest is the gluon propagator
● Taking into account general QFT and model-dependent constraints one 

can write [PL, 1702.02954; 1801.09337]:  

  

● Can now use numerical data to test different propagator ansätze

    

Taking trace, in 
Landau gauge

Euclidean generalisation is 
needed to test lattice data
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● Using the high precision Landau gauge lattice data from [Dudal, Oliveira, 

Silva 1803.02281] the strategy was to perform fits of various generalised 
pole terms up to some IR cutoff [Li, PL, Oliveira, Silva, 1907.10073]

● Started with the simplest possible one-pole components

● Also tested the various two-term combinations → fits performed with 
different choices of (increasingly conservative) systematics

● Results: found that the data was consistent with the appearance of a 
generalised mass pole in the spectral function of the form:

4. The gluon propagator   
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     → How does one interpret such a spectral component?

                 

On-shell state with mass m0
 Z0>0, positive norm (physical)
 Z0<0, negative norm (unphysical) 

Continuum contribution, contains 
information about composite states

Massive on-shell states with zero norm

4. The gluon propagator   

 Spectral function components  States in the spectrum  
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● A δ (΄ s-m12) component in the gluon spectral function implies the 
existence of a massive on-shell zero-norm state in the spectrum

   → State dominates the IR behaviour of the propagator
● One has N > 0, but non-vanishing m1  suggestions that that 

component is not singular enough at p2 = 0 to violate the CDP

   → Results in an exponential fall-off for R → ∞
● Clustered states created from single gluon fields do not appear to 

decorrelate the further apart they are separated

   → Gluon propagator not gauge-invariant though, so doesn’t         
       contradict the expectation that asymptotic coloured states       
       are absent from the spectrum!

4. The gluon propagator   
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● Local QFT is a framework which can be used to better understand the 
non-perturbative characteristics of QFTs

● Due to the complications that arise in gauge theories, QCD correlators 
can potentially contain more singular generalised pole components 

    → Important for understanding the asymptotic behaviour of            
        correlators (confinement)

    → Constrains the spectrum of the theory (zero-norm states)
● Fits of generalised pole terms to infrared gluon propagator lattice data 

suggest that the data is compatible with the existence of these type of 
components 

    → Opens a new direction for understanding QCD correlators 

5. Summary and outlook
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Outlook

➢ Are generalised pole terms relevant for hadron phenomenology?

➢ Can purely singular terms play a role in the CDP?

➢ What happens at finite temperature and density?

➢ What about gauge-invariant correlators?

[Brookhaven National Lab]

5. Summary and outlook
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BackupBackup
Fit results for [Li, PL, Oliveira, Silva, 1907.10073] 

● Performed fits using both 644 and 804  lattice data samples from [Dudal, 

Oliveira, Silva 1803.02281] to check for volume-dependent effects 
● Found that single delta-derivative provided a good fit alone, and its 

inclusion in other fit ansätze resulted in an improvement of those fits   

→ Chi-squared map for the 804     
    D1(p) fit with statistical &       
    polynomial shape uncertainty 
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Chi-squared definitions used in fits

(1) Statistical errors only:

(2) Statistical + shape systematics:

(3) Statistical + poly. shape:

Backup
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● Quantum fields φ(x) are distributions – what difference does this 
make?

→ This means that they cannot be evaluated at a single point       
    (e.g. Dirac delta δ(x) at x=0)

→ Need to ‘average them out’ over some spacetime region A

 

● But why? – Heisenberg: 

Can think of this as the 
performance of a measurement 
Mφ in the region A where f(x) is 

non-zero 
[MPI Munich (2004)]

A

φ

Backup
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