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Outline

• what is NIR -properties

• NIR in field theories without confinement

• NIR in QCD....

• quark gap equation in Minkowski space

• quark-photon vertex

• VHP and PTF applications



What is NIR

NIR is IR for GF’s of the theory

time ago NIR was PTIR (Perturbation Theory Integral representation)

N.Nakanishi workout PTIR for scalar QFT Nakanishi- Graph Theory and Feynman Integrals,

1971

Examples of PTIR for scalars:

• propagator

G(k) =

∞
∫

0

dx
g(x)

k2 − x + iε
(1)



The inverse propagator (selfenergy, polarization, etc..) DR

G
−1

= k
2
− m

2
+ Σ(k)

Σ(k) =

∞
∫

0

dx
gσ(x)

k2 − x + iε

• 3-legs vertex function Γ(p1, p2, p3) analysis of contributing Feynman diagrams
leads to the PTIR

Γ(p1, p2, p3) =

∞
∫

0

dα

3
∏

i=1

1
∫

0

dzi δ(1−
3

∑

i=1

zi)
ρ3(α, ~z)

α− (z1p21 + z2p22 + z3p23)− iǫ
,



in most cases the topology of considered diagrams is much simple, allowing
to use simplified NIR

simpler physics is , more dirac deltas we have in N.w. ρ

Γ(q,Q) =

∞
∫

αmin

dα

1
∫

−1

dz
ρ(α, z;Q2)

q2 + zq ·Q+ Q2

4 − α+ iǫ
,



NIR + DSEs

NIR gradually moved to non-perturbative and strong coupling regime of QFT

The DSEs are the equations of motion for Green’s functions of the theory and
NIR is useful way to express the Green’s functions in specific manner

V.S. J. Adam NPA 2001, ficube; V. S. Non-perturbative solution of metastable scalar models, JPA36 (2003).

DSE for N.w.s of 3theory

ρ(o) = gσ(o) + (m2 − o)P

∫ ∞

t

dx
ρ(x)gσ(o) + ρ(o)gσ(x)

x− o

gσ(o) = const

√

1− 4m2/o

(o−m2)2
+

∫

K1ρ+

∫ ∫

K2ρρ



Review of applications to SDEs, BSE: V. Sauli, FBS.39:45,(2006)



NIR + DSE/BSE formalism: properties

++

• since the momentum is very explicit in the expression for NIR, all required
space-time transformation, including Lorentz boost of vertices and meson wave
functions turns out to be an easy ask.

• When NIR is used for evaluating of form factor, one can integrate over the loop
momenta analytically. Consequently, the analytical continuation of calculated
form factors can be easily achieved and the result can be obtained in the entire
domain of Minkowski space.

To appreciate two above points, one obviously has to know NIR. For this
purpose I should point out the following desired property of NIR



• When NIR is used properly in the tower of DSEs, it allows the analytical
integration in DSEs and it automatically provides analytical continuation of
the solution to the entire domain of Minkowski space.

• Regarding the solution of DSEs, NIR should be self-consistently self-
reproducing. In other words: when NIR is used to express propagator and
vertices inside the DSE for n-point vertex, the NIR for this vertex must comes
out as a result as well.



- -

converting DSEs and BSEs into NIR is complicated and time consuming (and
impossible for some popular model/truncations of DSEs)

solutions for strong coupling QED, Yukawa theory propagators see

momentum DSE → new (soluble!) equation for Nakanishi weight g



2b- BSE and NIR in various QFT

, for more (see talk by Giovanni Salme) The vertex BSE

Γ = −
∫

V GBSΓ

P P
V

Figure 1: diag. BSE



g(α′, z′) = λ

1
∫

−1

dz

∞
∫

−∞

dα K(α′, z′;α, z) g(α, z)

NIR BSE: massive Wick-Cutkosky model (K.K. AGW 1996 PRD) , other
models including fields with higher spins , Karmanov, T. Frederico. G. Salme ,...

coupled DSE and BSE V.S. and J.A. 2003

attempts for mesons BSE exist V.S. JPG 2008

Curiozities:

• BSE for Higgsonium in Minkowski space

V. S.,arXiv:0808.1894, AIPConf.Proc.1030:274-279,2008 arXiv:0806.3454



• Regge trajetories for M2(n) in toy BSE model. conf. Ecxcited QCD , Trento



QCD

QCD DSE/BSEs not by NIR: (see talk by Gernot Eichmann)

YM part- The first suggestion to use the NIR in QCD is related with
introduction of PT in pure Yang-Mills theory in 1982 by J. Cornwall

Confinement issues- no real poles? But where the singularities comes?

The functional QCD resisted against marriage with the NIR formalism for
more many decades

Near critical solution:

Dynamical chiral symmetry breaking with Minkowski space integral represen-
tations V. Sauli, J. Adam, P. Bicudo PRD75,2007



SAB model

Dynamical chiral symmetry breaking with Minkowski space integral represen-
tations

M(p2) = S−1
0 (p) − S−1(p) = ig2

∫

d4q

(2π)4
γαS(q)γβ

[

−gαβ +
lαlβ

l2

]

−Λ2 + m2
g

(l2 − m2
g + iǫ)(l2 − Λ2 + iǫ)

,

mg/Λ = 30/, /, ;M(M) = 0.001(α = 1.64);M(M) ≃ mg(α = 2)
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Figure 2: M for α = 1.64; 1.7, 2.0 and spacelike P Solid (dashed)
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Figure 4: (Color online) Propagators...



ABS model was not yet QCD since the coupling was too small, the slope of
M was to small. No conf. = in-consistent with QCD



NIR in QCD&QED NIR

-Understanding of confinemet of light quarks in NIR formalism...

-colorless form factor (production of mesons)

first suggestionJ. Cornwall 1982 pure YM

NO DSE for quarks was solved till 2018, gluodynamics not yet solved

V.S. Hadron Vacuum Polarization from application of DSEs and analytical confinement , ArXiv:1809.07644

V.S. nakanishi integral representation for qqγ vertex ArXiv

spectral representation does not work in QCD...

This problem has been circumvented only very recently and the QCD DSEs
were solved in the entire Minkowski space providing the light pion, correct pion



decay constant, correct width of neutral pion pi0 → γγ as well as a very simple
explanation of quark confinement.

• Formalism of IR for untruncated vertices in DSEs ( generalization Gauge
Technique Salam 63, Strathdee 67, Delbourgho , West 67 )

• solution rely on tricks: departure from standards and arrival back in certain
limit ... trick with contours

• model was tuned on VHP ( in addition to mπ)

S(p) =

∫

Γ

dx
ρ(x)

( 6 p− x)



qqγ vertex

Gµ(q;Q) =

∫

Γ

dx
1

6 q− − x

(

γµρ(x) +
ρ1(x)T

µ
1

q2 +Q2/4− x2 + ε

)

1

6 q+ − x

1. Gauge Technique & Nakanishi IR ? Y -easy

2. QCD DSEs transormable into NIR? Equation for Nakanishi weights?

3. solution ? Y - nontrivial new approach needed beacuse of analyticity



Sq(p) =

∫

Γ

dx
ρ(x)

( 6 p− x)
.

Gµ(q;Q) =

∫

Γ

dx
1

6 q− − x

(

γµρ(x) +
ρ1(x)T

µ
1

q2 +Q2/4− x2 + ε

)

1

6 q+ − x
,

2. QCD and NIR? ? Yes, at least in some truncation of the system!

2a) shown for the Sq in LRA trunc. if the kernel satisfies NIR

already solved numerically V.S. hep-ph

2b) vertex study Gµ(q;Q) DSE converted for the N.w. for GT +γµ



ad 2) Quark gap equation in NIR formalism

Sq(p) =

∫

Γ

dx
ρ(x)

( 6 p− x)
. (2)

How to solve it ? 2steps precede (2)

Specify Γ (subtleties due to the unitarity of physical form factors) , convert
DSE

solve DSE + fit it form BSE for the pion

ad 2) QCD & NIR -the model:



V (l) = γµ × γν

(

−g
µν

VV (l) −
4g2

3
ξ
Lµν(l)

l2

)

,

VV (l) =
cV (m2

g − Λ2
g)

(l2 − m2
g + iε)(l2 − Λ2

g + iε)
,

L
µν

(l) = l
µ
l
ν
/l

2
,

for which the quark Dyson-Schwinger equation can be written as

S−1(q) = 6 q − mq − Σ(q) ,

Σ(q) = i

∫

d4k

(2π)4
S(k)V (k − q) (3)

parameters consistent with pion:

[α =
g2v
4π = 22.62, g

2ξ
4π = 2.13;

mg

Λg
= 0.516;mg =

√
2mπ ≃ mπ]



Confinement of quarks

No real in pole S , but bump. position M ≃ 265MeV and M(0) ≃
235MeV

remind the ABS result/fit completely different
m2

g

Λ2
g
= 1/900
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Figure 5: The quark propagator function Sv
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Figure 6: Typical look known from the E studies but solved in M
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Figure 7: The same as in previous figure, but larger piece of Minkowski

space shown.



-20 -10 0 10 20 30

p
2 

 [GeV
2
]

-1

0

1

2

3

4

A
,B

Re A
Im A
Re B
Im B

Figure 8: Conventional look of the quark function A and B



Application to Hadron Vacuum Polarization (just GT Ansatz, T not yet
incorporated)

Πµν
h (s) = −ie2Nc

∑

q

eqTr

∫

d4k

(2π)4
Γµ
q (k − q, k)Sq(k)γ

νSq(k − q) (4)
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Figure 9: VHP zoomed in the spacelike domain of momenta. The one

has mπ = 140MeV (solid one) and rescaled one corresponds with

mπ = 210MeV
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Figure 10: The function Πh/C obtained via Gauge Technique with

the constant C defined as C = −40α/(9π).



Point 3- Tuning the Analyticity !

reminder:

1. Gauge Technique & Nakanishi IR ? Y -easy

2. ARE QCD DSEs transormable into NIR? Equation for Nakanishi weights? Y- easy for S, hard for Γ

3. solution ? Y - nontrivial new approach required because of Unitarity/analyticity

Ad3:

getting solution in practice:

Empirical observation: QCD does not like spectral representation, when use it
to find N.w. numerical convergence dies



NO GO for Lehmann R.

Sq(p) =

∫ ∞

T

do
6 pgv(o)− gs(o)

p2 − o+ iε
.

Introduce un-physical auxiliary cut in the NIR for GFs (in all), which makes
DSEs for NWs convergent and minimize it during numerical solution.

The appropriate contour is represented by infinite axis cross in the complex
plane of variable x, i.e. Γ = Γ1 + Γ2 where Γ1 : Rex , and Γ2 : Imx .
Making the substitution o = x2 leads to the following appearance of two common



functions

gv(o) =
ρ(
√
o) + ρ(−

√
o)

2
√
o

gs(o) =
ρ(
√
o)− ρ(−

√
o)

2

defined in the R+ domain of variable o, which gives plus part of the quark
propagator

S+(p) =

∫ ∞

0

do
6 pgv(o) + gs(o)

p2 − o+ iε

Considering the contribution from “unphysical “ contour Γ2 one gets the above
functions defined for o < 0 as superposition of ρ defined at two branches of square



root function of x:

gv(o) = i
ρ(
√
−o)− ρ(−

√
−o)

2
√
−o

gs(o) = −ρ(
√
−o) + ρ(−

√
−o)

2
,

which gives us the auxiliary function S− and completes the quark propagator
S = S− + S+

S(p) =

∫ ∞

−∞

do
6 pgv(o) + gs(o)

p2 − o+ iε
. (5)

the introduction of S− modes should be regarded as an auxiliary step and this
function is subject of minimization when the system is solved numerically.

VHP was calculated simultaneously with DSE and BSE



Minimize S− by using free parameters associated with truncation of DSEs
system

If minimization is not used, one gets stable solutions, which violates Unitarity
of S-matrix

Results were obtained by fitting the pion BSE with simultaneous Minimization
of S− modes.



Conclusion of QCD part

Desired analytical property (Relations od Unitarity between amplitudes and
cross sections) of physical form factor becomes a part of solution of DSEs system
in QCD in Minkowski space. Tuning parameters, which determine details of
functions which were truncated away from DSEs system, was used to recover
standard analytical property of VHP, which has cut at timelike axis of p2

”Pion properties determine the VHP and vice versa”

Improvement in future is expected.


