POSITIVITY VIOLATION IN THE MINKOWSKI SPACE QUARK PROPAGATOR

IFT - UNESP

Gastão Krein Instituto de Física Teórica, São Paulo

Nonperturbative QFT in Euclidean and Minkowski

Coimbra, 10 - 12 September 2019

Outline

- Motivation
- Spectral representation
- —Toy-model calculation
- Positivity violation
- Complex-mass poles
- Conclusions

Work with students

- Caroline Costa, Vivian Luiz, Enzo Solis

Why Minkowski space?

- I. Time-like form factors
- 2. Inelastic processes, particle production
- 3. Fragmentation functions
- 4. Many-body transport properties
- 5. Confinement, positivity violation, complex-mass poles

Work somewhat related to work of:

— Biernat et al., Binosi et al., Carbonel et al., Cornwall, Dudal et al., Frederico et al., Lowdon, Salmè et al., Sauli, Siringo, Wschebor et al, ...

Fermion propagator

— model-independent features

- I. Spectral representation
- 2. Positivity
- 3. One instead of two spectral functions
- 4. Getting rid of the Dirac structure
- 5. No zeros no poles or zeros off real axis
- 6. Renormalization

Fermion propagator — review, notation

Renormalized propagator (omit ren. scale µ)

$$\psi_{\Lambda}(x) = \sqrt{Z_{\Psi}} \psi(x) \qquad m_{\Lambda} = Z_m m$$

$$iS_{\alpha\beta}(x-y) = \langle \Omega | T[\psi_{\alpha}(x)\overline{\psi}_{\beta}(y)] | \Omega \rangle$$
$$= Z_{\psi}^{-1} iS_{\Lambda\alpha\beta}(x-y)$$

Will work in momentum space

$$S_{\alpha\beta}(x-y) = \int \frac{d^4p}{(2\pi)^4} e^{-ip \cdot (x-y)} S_{\alpha\beta}(p)$$

Lorentz + parity symmetries

$$S_{\Lambda}(p) = \frac{1}{A_{\Lambda}(p^2)\not p - B_{\Lambda}(p^2) + i\varepsilon} = \frac{1}{A_{\Lambda}(p^2)} \frac{1}{\not p - M_{\Lambda}(p^2) + i\varepsilon}$$
$$= Z_{\Psi}S(p) = Z_{\Psi}\frac{1}{A(p^2)\not p - B(p^2) + i\varepsilon}$$
$$= \frac{Z_{\Psi}}{A(p^2)} \frac{1}{\not p - M(p^2) + i\varepsilon}$$

$$M_{\Lambda}(p^{2}) = \frac{B_{\Lambda}(p^{2})}{A_{\Lambda}(p^{2})} \begin{cases} B(p^{2}) = Z_{\psi}B_{\Lambda}(p^{2}) \\ A(p^{2}) = Z_{\psi}A_{\Lambda}(p^{2}) \end{cases} \longrightarrow M(p^{2}) = M_{\Lambda}(p^{2})$$

Spectral representation — CPT & Lorentz symm. + unitarity

$$S_{\Lambda}(p) = \int_0^\infty ds^2 \frac{\rho_{1\Lambda}(s^2) p + \rho_{2\Lambda}(s^2)}{p^2 - s^2 + i\varepsilon}$$

Positivity constraints

$$\rho_{1\Lambda}(s^2) \ge 0$$

$$s\rho_{1\Lambda}(s^2) - \rho_{2\Lambda}(s^2) \ge 0$$

Instead of two, one spectral function

Instead of two, one spectral function

$$\rho_{\Lambda 1}(\kappa^2) = \frac{\rho_{\Lambda}(\kappa) + \rho_{\Lambda}(-\kappa)}{2\kappa}$$

$$\rho_{\Lambda 2}(\kappa^2) = \frac{\rho_{\Lambda}(\kappa) - \rho_{\Lambda}(-\kappa)}{2}$$

Instead of two, one spectral function

$$\rho_{\Lambda 1}(\kappa^2) = \frac{\rho_{\Lambda}(\kappa) + \rho_{\Lambda}(-\kappa)}{2\kappa}$$

$$\rho_{\Lambda 2}(\kappa^2) = \frac{\rho_{\Lambda}(\kappa) - \rho_{\Lambda}(-\kappa)}{2}$$

Projection operators

Projection operators

$$P_{\pm}(p) = \frac{1}{2} \left(1 \pm \frac{p}{w(p)} \right) \quad \text{where} \quad w(p) \equiv \begin{cases} \sqrt{p^2} = \sqrt{(p^0)^2 - p^2}, & p^2 > 0\\ i\sqrt{-p^2} = i\sqrt{p^2 - (p^0)^2}, & p^2 < 0 \end{cases}$$

Projection operators $P_{\pm}(p) = \frac{1}{2} \left(1 \pm \frac{p}{w(p)} \right)$ where $w(p) \equiv \begin{cases} \sqrt{p^2} = \sqrt{(p^0)^2 - p^2}, & p^2 > 0 \\ i\sqrt{-p^2} = i\sqrt{p^2 - (p^0)^2}, & p^2 < 0 \end{cases}$

$$S_{\Lambda}(p) = P_{+}(p)\widetilde{S}_{\Lambda}(w(p) + i\varepsilon) + P_{+}(p)\widetilde{S}_{\Lambda}(-w(p) - i\varepsilon)$$

Projection operators

$$P_{\pm}(p) = \frac{1}{2} \left(1 \pm \frac{p}{w(p)} \right) \quad \text{where} \quad w(p) \equiv \begin{cases} \sqrt{p^2} = \sqrt{(p^0)^2 - p^2}, & p^2 > 0\\ i\sqrt{-p^2} = i\sqrt{p^2 - (p^0)^2}, & p^2 < 0 \end{cases}$$

$$S_{\Lambda}(p) = P_{+}(p)\widetilde{S}_{\Lambda}(w(p) + i\varepsilon) + P_{+}(p)\widetilde{S}_{\Lambda}(-w(p) - i\varepsilon)$$

$$\widetilde{S}_{\Lambda}(z) = \int_{-\infty}^{+\infty} d\kappa \, \frac{\rho_{\Lambda}(\kappa)}{z-\kappa}$$

$$z = \pm (w(p) + i\varepsilon)$$

 $\psi_{\Lambda}(x) = \sqrt{Z_{\Psi}} \, \psi(x)$

 $\psi_{\Lambda}(x) = \sqrt{Z_{\Psi}} \psi(x) \longrightarrow \rho_{\Lambda}(\kappa) = Z_{\Psi} \rho(\kappa) \xrightarrow{Z_{\Psi} = Z_{\Psi}(\mu)} \rho(\kappa) = \rho(\kappa, \mu)$

$$\psi_{\Lambda}(x) = \sqrt{Z_{\Psi}} \psi(x) \longrightarrow \rho_{\Lambda}(\kappa) = Z_{\Psi} \rho(\kappa) \xrightarrow{Z_{\Psi} = Z_{\Psi}(\mu)} \rho(\kappa) = \rho(\kappa, \mu)$$

From anticommutator

$$\{\psi_{\Lambda\alpha}(x^0,x),\overline{\psi}_{\Lambda\beta}(y^0,y)\}_{x^0=y^0}=i\delta^{(3)}(x-y)(\gamma^0)_{\alpha\beta}$$

$$\psi_{\Lambda}(x) = \sqrt{Z_{\Psi}} \psi(x) \longrightarrow \rho_{\Lambda}(\kappa) = Z_{\Psi} \rho(\kappa) \xrightarrow{Z_{\Psi} = Z_{\Psi}(\mu)} \rho(\kappa) = \rho(\kappa, \mu)$$

From anticommutator $\{\psi_{\Lambda\alpha}(x^0,x), \overline{\psi}_{\Lambda\beta}(y^0,y)\}_{x^0=y^0} = i\delta^{(3)}(x-y)(\gamma^0)_{\alpha\beta}$

$$\int_{-\infty}^{+\infty} d\kappa \,\rho_{\Lambda}(\kappa) = 1$$

$$\psi_{\Lambda}(x) = \sqrt{Z_{\Psi}} \psi(x) \longrightarrow \rho_{\Lambda}(\kappa) = Z_{\Psi} \rho(\kappa) \xrightarrow{Z_{\Psi} = Z_{\Psi}(\mu)} \rho(\kappa) = \rho(\kappa, \mu)$$

From anticommutator $\{\psi_{\Lambda\alpha}(x^0,x),\overline{\psi}_{\Lambda\beta}(y^0,y)\}_{x^0=y^0} = i\delta^{(3)}(x-y)(\gamma^0)_{\alpha\beta}$

$$\int_{-\infty}^{+\infty} d\kappa \rho_{\Lambda}(\kappa) = 1 \qquad \longrightarrow \qquad Z_{\psi}^{-1}(\mu) = \int_{-\infty}^{+\infty} d\kappa \rho(\kappa,\mu)$$

$$\psi_{\Lambda}(x) = \sqrt{Z_{\Psi}} \psi(x) \longrightarrow \rho_{\Lambda}(\kappa) = Z_{\Psi} \rho(\kappa) \xrightarrow{Z_{\Psi} = Z_{\Psi}(\mu)} \rho(\kappa) = \rho(\kappa, \mu)$$

From anticommutator $\{\psi_{\Lambda\alpha}(x^0,x),\overline{\psi}_{\Lambda\beta}(y^0,y)\}_{x^0=y^0} = i\delta^{(3)}(x-y)(\gamma^0)_{\alpha\beta}$

$$\int_{-\infty}^{+\infty} d\kappa \rho_{\Lambda}(\kappa) = 1 \qquad \longrightarrow \qquad Z_{\Psi}^{-1}(\mu) = \int_{-\infty}^{+\infty} d\kappa \rho(\kappa, \mu)$$
$$0 \le Z_{\Psi} < 1$$

$$S_{\Lambda}^{-1}(p) = [S_{\Lambda}^{(0)}(p)]^{-1} - \Sigma_{\Lambda}(p)$$

$$S_{\Lambda}^{-1}(p) = [S_{\Lambda}^{(0)}(p)]^{-1} - \Sigma_{\Lambda}(p)$$

Spectral representation $S_{\Lambda}^{-1}(p^2) = P_{+}(p)\widetilde{S}^{-1}(w(p) + i\varepsilon) + P_{-}(p)\widetilde{S}^{-1}(-w(p) - i\varepsilon)$

Self-energy

$$S_{\Lambda}^{-1}(p) = [S_{\Lambda}^{(0)}(p)]^{-1} - \Sigma_{\Lambda}(p)$$

Spectral representation $S_{\Lambda}^{-1}(p^2) = P_{+}(p)\widetilde{S}^{-1}(w(p) + i\varepsilon) + P_{-}(p)\widetilde{S}^{-1}(-w(p) - i\varepsilon)$

$$\widetilde{S}_{\Lambda}^{-1}(z) = z - m_{\Lambda} - \int_{-\infty}^{+\infty} d\kappa \, \frac{\sigma_{\Lambda}(\kappa)}{z - \kappa}$$

Self-energy

$$S_{\Lambda}^{-1}(p) = [S_{\Lambda}^{(0)}(p)]^{-1} - \Sigma_{\Lambda}(p)$$

Spectral representation $S_{\Lambda}^{-1}(p^2) = P_{+}(p)\widetilde{S}^{-1}(w(p) + i\varepsilon) + P_{-}(p)\widetilde{S}^{-1}(-w(p) - i\varepsilon)$

$$\widetilde{S}_{\Lambda}^{-1}(z) = z - m_{\Lambda} - \int_{-\infty}^{+\infty} d\kappa \, \frac{\sigma_{\Lambda}(\kappa)}{z - \kappa}$$

Renormalized self-energy

Self-energy

$$S_{\Lambda}^{-1}(p) = [S_{\Lambda}^{(0)}(p)]^{-1} - \Sigma_{\Lambda}(p)$$

Spectral representation $S_{\Lambda}^{-1}(p^2) = P_{+}(p)\widetilde{S}^{-1}(w(p) + i\varepsilon) + P_{-}(p)\widetilde{S}^{-1}(-w(p) - i\varepsilon)$

$$\widetilde{S}_{\Lambda}^{-1}(z) = z - m_{\Lambda} - \int_{-\infty}^{+\infty} d\kappa \, \frac{\sigma_{\Lambda}(\kappa)}{z - \kappa}$$

Renormalized self-energy

$$\widetilde{S}^{-1}(z) = Z_{\psi} \widetilde{S}_{\Lambda}^{-1}(z) = Z_{\psi}(z - Z_m m) - \int_{-\infty}^{+\infty} d\kappa \frac{\sigma(\kappa)}{z - \kappa}$$

$$\sigma_{\Lambda}(\kappa) = Z_{\psi}^{-1}(\mu) \,\sigma(\kappa,\mu)$$

No zero off real axis

$$\widetilde{S}(x+iy) = \int_{-\infty}^{+\infty} d\kappa \, \frac{\rho(\kappa)}{x+iy-\kappa}$$
$$= (x-iy) \int_{-\infty}^{+\infty} d\kappa \, \frac{\rho(\kappa)}{(x-\kappa)^2+y^2}$$

$$\widetilde{S}(x+iy) = \int_{-\infty}^{+\infty} d\kappa \, \frac{\rho(\kappa)}{x+iy-\kappa}$$
$$= (x-iy) \int_{-\infty}^{+\infty} d\kappa \, \frac{\rho(\kappa)}{(x-\kappa)^2+y^2}$$

$$\widetilde{S}(x+iy) = \int_{-\infty}^{+\infty} d\kappa \, \frac{\rho(\kappa)}{x+iy-\kappa}$$
$$= (x-iy) \int_{-\infty}^{+\infty} d\kappa \, \frac{\rho(\kappa)}{(x-\kappa)^2+y^2}$$

$$\operatorname{Im}\widetilde{S}(z) = -y \int_{-\infty}^{+\infty} d\kappa \, \frac{\rho(\kappa)}{(x-\kappa)^2 + y^2}$$

No zero off real axis z = x + iy, x, y real

$$\widetilde{S}(x+iy) = \int_{-\infty}^{+\infty} d\kappa \, \frac{\rho(\kappa)}{x+iy-\kappa}$$
$$= (x-iy) \int_{-\infty}^{+\infty} d\kappa \, \frac{\rho(\kappa)}{(x-\kappa)^2+y^2}$$

$$\operatorname{Im}\widetilde{S}(z) = -y \int_{-\infty}^{+\infty} d\kappa \, \frac{\rho(\kappa)}{(x-\kappa)^2 + y^2}$$

Zero only if y = 0, as $\rho > 0$

No zero off real axis z = x + iy, x, y real

$$\widetilde{S}(x+iy) = \int_{-\infty}^{+\infty} d\kappa \, \frac{\rho(\kappa)}{x+iy-\kappa}$$
$$= (x-iy) \int_{-\infty}^{+\infty} d\kappa \, \frac{\rho(\kappa)}{(x-\kappa)^2+y^2}$$

$$\operatorname{Im}\widetilde{S}(z) = -y \int_{-\infty}^{+\infty} d\kappa \, \frac{\rho(\kappa)}{(x-\kappa)^2 + y^2}$$

Zero only if y = 0, as $\rho > 0$

No poles off real axis

$$\widetilde{S}^{-1}(z)$$
 does not have zeros off real axis

Renormalization

- set renormalisation condition

- set renormalisation condition

I) At some spacelike point

- set renormalisation condition

I) At some spacelike point

$$S^{-1}(p,\mu) \xrightarrow{p^2 = -\mu^2} p - m(\mu)$$

- set renormalisation condition

I) At some spacelike point

$$S^{-1}(p,\mu) \xrightarrow{p^2 = -\mu^2} p - m(\mu)$$

- set renormalisation condition

I) At some spacelike point

$$S^{-1}(p,\mu) \xrightarrow{p^2 = -\mu^2} p - m(\mu)$$

$$p^2=\mu^2\equiv M_{\rm p}^2>0$$

$$S^{-1}(p,\mu) \xrightarrow{p^2 = -\mu^2} p - m(\mu)$$

$$S^{-1}(p,\mu) \xrightarrow{p^2 = -\mu^2} p - m(\mu)$$

Using the projection operators

$$S^{-1}(p,\mu) \xrightarrow{p^2 = -\mu^2} p - m(\mu)$$

Using the projection operators

$$Z_{\psi}(\mu) = 1 - \int_{-\infty}^{+\infty} d\kappa \frac{\sigma(\kappa,\mu)}{\kappa^2 + \mu^2}$$

$$Z_{\psi}(\mu)Z_{m}(\mu)m(\mu) = m(\mu) + \int_{-\infty}^{+\infty} d\kappa \frac{\kappa\sigma(\kappa,\mu)}{\kappa^{2} + \mu^{2}}$$

$$S^{-1}(p,\mu) \xrightarrow{p^2 = -\mu^2} p - m(\mu)$$

Using the projection operators

$$Z_{\Psi}(\mu) = 1 - \int_{-\infty}^{+\infty} d\kappa \frac{\sigma(\kappa,\mu)}{\kappa^2 + \mu^2}$$

$$Z_{\psi}(\mu)Z_{m}(\mu)m(\mu) = m(\mu) + \int_{-\infty}^{+\infty} d\kappa \frac{\kappa\sigma(\kappa,\mu)}{\kappa^{2} + \mu^{2}}$$

Eliminate the renormalization constants

$$S^{-1}(p,\mu) \xrightarrow{p^2 = -\mu^2} p - m(\mu)$$

Using the projection operators

$$Z_{\psi}(\mu) = 1 - \int_{-\infty}^{+\infty} d\kappa \frac{\sigma(\kappa,\mu)}{\kappa^2 + \mu^2}$$

$$Z_{\psi}(\mu)Z_{m}(\mu)m(\mu) = m(\mu) + \int_{-\infty}^{+\infty} d\kappa \frac{\kappa\sigma(\kappa,\mu)}{\kappa^{2} + \mu^{2}}$$

Eliminate the renormalization constants

$$\widetilde{S}^{-1}(z,\mu) = z - m(\mu) - (z^2 + \mu^2) \int_{-\infty}^{+\infty} d\kappa \frac{\sigma(\kappa,\mu)}{(z-\kappa)(\kappa^2 + \mu^2)}$$

$$p^2=\mu^2\equiv M_{\rm p}^2>0$$

$$p^2=\mu^2\equiv M_{\rm p}^2>0$$

$$Z_{\psi}^{\mathrm{os}}(M_{\mathrm{p}}) = 1 - \int_{-\infty}^{+\infty} d\kappa \, \frac{\sigma(\kappa, M_{p})}{(M_{\mathrm{p}} - \kappa)^{2}}$$
$$Z_{\psi}^{\mathrm{os}}(M_{\mathrm{p}})[M_{\mathrm{p}} - Z_{m}^{\mathrm{os}} m(M_{\mathrm{p}})] = \int_{-\infty}^{+\infty} d\kappa \, \frac{\sigma(\kappa, \mu)}{M_{\mathrm{p}} - \kappa}$$

$$p^2=\mu^2\equiv M_{\rm p}^2>0$$

$$Z_{\psi}^{\text{os}}(M_{\text{p}}) = 1 - \int_{-\infty}^{+\infty} d\kappa \frac{\sigma(\kappa, M_{p})}{(M_{p} - \kappa)^{2}}$$
$$Z_{\psi}^{\text{os}}(M_{p})[M_{p} - Z_{m}^{\text{os}}m(M_{p})] = \int_{-\infty}^{+\infty} d\kappa \frac{\sigma(\kappa, \mu)}{M_{p} - \kappa}$$

$$\widetilde{S}_{\rm os}^{-1}(z,M_p) = (z-M_p) \left[1 - (z-M_p) \int_{-\infty}^{+\infty} d\kappa \frac{\sigma(\kappa,M_p)}{(z-\kappa)(\kappa-M_p)^2} \right]$$

Spectral function of the self-energy

Spectral function of the self-energy

$$\sigma(\kappa) = \frac{1}{2\pi i} \left[\widetilde{S}^{-1}(\kappa + i\varepsilon) - \widetilde{S}^{-1}(\kappa - i\varepsilon) \right]$$
$$= |\widetilde{S}^{-1}(\kappa + i\varepsilon)|^2 \rho(\kappa)$$

Spectral function of the self-energy

$$\sigma(\kappa) = \frac{1}{2\pi i} \left[\widetilde{S}^{-1}(\kappa + i\varepsilon) - \widetilde{S}^{-1}(\kappa - i\varepsilon) \right]$$
$$= |\widetilde{S}^{-1}(\kappa + i\varepsilon)|^2 \rho(\kappa)$$

Spectral function of the propagator

Spectral function of the self-energy

$$\sigma(\kappa) = \frac{1}{2\pi i} \left[\widetilde{S}^{-1}(\kappa + i\varepsilon) - \widetilde{S}^{-1}(\kappa - i\varepsilon) \right]$$
$$= |\widetilde{S}^{-1}(\kappa + i\varepsilon)|^2 \rho(\kappa)$$

Spectral function of the propagator

$$\rho(\kappa) = \frac{i}{2\pi} \left[\widetilde{S}(\kappa + i\varepsilon) - \widetilde{S}(\kappa - i\varepsilon) \right] = \frac{i}{2\pi} \left\{ \left[\widetilde{S}^{-1}(\kappa + i\varepsilon) \right]^{-1} - \left[\widetilde{S}^{-1}(\kappa - i\varepsilon) \right]^{-1} \right\}$$
$$= R(M_p) \,\delta(\kappa - M_p) + \overline{\rho}(\kappa)$$
$$\overline{\rho}(\kappa) = |\widetilde{S}^{-1}(\kappa + i\varepsilon)|^{-2} \,\sigma(\kappa)$$

An explicit calculation — use a toy model

- I. Dyson-Schwinger equation
- 2. Model for quark-gluon kernel
- 3. Positivity violation
- 4. No complex poles
- 5. Perturbation theory

Dyson-Schwinger equation for the quark propagator

Toy model

Dyson-Schwinger equation for the quark propagator

$$S_{\Lambda}^{-1}(p) = \not p - m_{\Lambda} - i \int \frac{d^4q}{(2\pi)^4} g_{\Lambda}^2 \gamma_{\mu} D_{\Lambda}^{\mu\nu}(q) S_{\Lambda}(p-q) T^a \Gamma_{\Lambda\nu}^a(q, p-q, p)$$

Toy model

Dyson-Schwinger equation for the quark propagator

$$S_{\Lambda}^{-1}(p) = \not p - m_{\Lambda} - i \int \frac{d^4q}{(2\pi)^4} g_{\Lambda}^2 \gamma_{\mu} D_{\Lambda}^{\mu\nu}(q) S_{\Lambda}(p-q) T^a \Gamma_{\Lambda\nu}^a(q, p-q, p)$$

Model quark-gluon kernel

Toy model

Dyson-Schwinger equation for the quark propagator

$$S_{\Lambda}^{-1}(p) = \not p - m_{\Lambda} - i \int \frac{d^4q}{(2\pi)^4} g_{\Lambda}^2 \gamma_{\mu} D_{\Lambda}^{\mu\nu}(q) S_{\Lambda}(p-q) T^a \Gamma_{\Lambda\nu}^a(q, p-q, p)$$

Model quark-gluon kernel

$$g_{\Lambda}^{2}D_{\Lambda}^{\mu\nu}(q)\Gamma_{\Lambda\nu}^{a}(q,p-q,p) = -g^{2}T^{a}F(q,p-q,p)\gamma^{\mu}$$

singularity-free

$$F(q,p-q,p) = \frac{R(q,p-q,p)}{q^{2}-\varsigma^{2}+i\varepsilon}$$

Dyson-Schwinger equation for the model

Dyson-Schwinger equation for the model

$$\widetilde{S}^{-1}(w(p)+i\varepsilon) = Z_{\psi}(\mu) \left[w(p) - Z_m(\mu) m(\mu) \right] + C_F \left(\frac{g}{4\pi} \right)^2 \int_{-\infty}^{+\infty} d\kappa \, K(w(p),\kappa) \, \rho(\kappa,\mu)$$

 $C_F = T^a T^a = 3/4$

$$K(w(p),\kappa) = \frac{2}{w(p)} \frac{i}{\pi^2} \int d^4q \left[\frac{2w(p)\kappa - p \cdot (p-q)}{(p-q)^2 - \kappa^2 + i\varepsilon} \right] \frac{R(q,p-q,p)}{q^2 - \varsigma^2 + i\varepsilon}$$

Dyson-Schwinger equation for the model

$$\widetilde{S}^{-1}(w(p)+i\varepsilon) = Z_{\psi}(\mu) \left[w(p) - Z_m(\mu) m(\mu) \right] + C_F \left(\frac{g}{4\pi} \right)^2 \int_{-\infty}^{+\infty} d\kappa \, K(w(p),\kappa) \, \rho(\kappa,\mu)$$

 $C_F = T^a T^a = 3/4$

$$K(w(p),\kappa) = \frac{2}{w(p)} \frac{i}{\pi^2} \int d^4q \left[\frac{2w(p)\kappa - p \cdot (p-q)}{(p-q)^2 - \kappa^2 + i\varepsilon} \right] \frac{R(q,p-q,p)}{q^2 - \varsigma^2 + i\varepsilon}$$

Unknown is $\rho(\kappa,\mu)$

Solve by iteration

Iteration procedure

I. Make ansatz for $\rho(\kappa,\mu)$ and use it in:

$$\begin{aligned} \sigma(\kappa) &= \frac{1}{2\pi i} \left[\widetilde{S}^{-1}(\kappa + i\varepsilon) - \widetilde{S}^{-1}(\kappa - i\varepsilon) \right] \\ \bullet \\ \sigma(\kappa, \mu) &= C_F \left(\frac{g}{4\pi} \right)^2 \int_{-\infty}^{+\infty} d\kappa' \frac{1}{2\pi i} \left[K(\kappa, \kappa') - K^*(\kappa, \kappa') \right] \rho(\kappa', \mu) \\ &= \frac{\alpha_s}{\pi} \frac{1}{3} \int_{-\infty}^{+\infty} \frac{d\kappa'}{|\kappa|^3} \left[\left(\kappa^2 - {\kappa'}^2 \right)^2 - \left(\kappa^2 + {\kappa'}^2 \right) + \varsigma^4 \right]^{1/2} \left[(\kappa - \kappa')^2 - 2\kappa \kappa' - \varsigma^2 \right] \\ &\times \theta(\kappa^2 - (|\kappa'| + \varsigma)^2) R(\varsigma, \kappa', \kappa) \rho(\kappa', \mu) \end{aligned}$$

2. Find new $\rho(\kappa,\mu)$ from

$$\rho(\kappa) = \frac{i}{2\pi} \left[\widetilde{S}(\kappa + i\varepsilon) - \widetilde{S}(\kappa - i\varepsilon) \right] = \frac{i}{2\pi} \left\{ \left[\widetilde{S}^{-1}(\kappa + i\varepsilon) \right]^{-1} - \left[\widetilde{S}^{-1}(\kappa - i\varepsilon) \right]^{-1} \right\}$$
$$= R(M_p) \,\delta(\kappa - M_p) + \overline{\rho}(\kappa)$$
$$\overline{\rho}(\kappa) = |\widetilde{S}^{-1}(\kappa + i\varepsilon)|^{-2} \,\sigma(\kappa)$$

Need find pole mass $M_p(p)$ and residue $R(M_p)$

3. Cycle to convergence

Parameters

$$R(q, p-q, p) = f(q)f(p-q)f(p)$$

$$f(p) = \exp(-|p^2|/\omega^2)$$

$$\mu = 100 \text{ GeV}, \quad m(\mu) = 0.005 \text{ GeV}, \quad \alpha_s/\pi = 1.25$$

 $\varsigma = 0.6 \text{ GeV}, \quad \omega = 2.5 \text{ GeV}$

Parameters

Form-factor in quark-gluon kernel

$$F(q, p-q, p) = \frac{R(q, p-q, p)}{q^2 - \varsigma^2 + i\varepsilon}$$

$$R(q, p-q, p) = f(q)f(p-q)f(p)$$

$$f(p) = \exp(-|p^2|/\omega^2)$$

Numerical values

 $\mu = 100 \text{ GeV}, \quad m(\mu) = 0.005 \text{ GeV}, \quad \alpha_s/\pi = 1.25$ $\varsigma = 0.6 \text{ GeV}, \quad \omega = 2.5 \text{ GeV}$

Spectral function of the propagator

 $\rho(\kappa) = R(M_p)\,\delta(\kappa - M_p) + \overline{\rho}(\kappa)$

Pole mass and residue: $M_p = 0.36 \text{ GeV}$ $R(M_p) = 0.83$

Spectral function of the propagator

 $\rho(\kappa) = R(M_p)\,\delta(\kappa - M_p) + \overline{\rho}(\kappa)$

Pole mass and residue: $M_p = 0.36 \text{ GeV}$ $R(M_p) = 0.83$

NO complex-mass poles

Spectral function of the self-energy

Spectral function of the self-energy

$$S(p) = \frac{1}{A(p^2)p - B(p^2) + i\varepsilon} = \frac{1}{A(p^2)} \frac{1}{p - M(p^2) + i\varepsilon}$$

A(*p*²)

B(*p*²)

Where is positivity violation coming from?

In the present model from the $-2\kappa\kappa'$ term in

$$\begin{aligned} \sigma(\kappa,\mu) &= C_F \left(\frac{g}{4\pi}\right)^2 \int_{-\infty}^{+\infty} d\kappa' \frac{1}{2\pi i} \left[K(\kappa,\kappa') - K^*(\kappa,\kappa') \right] \rho(\kappa',\mu) \\ &= \frac{\alpha_s}{\pi} \frac{1}{3} \int_{-\infty}^{+\infty} \frac{d\kappa'}{|\kappa|^3} \left[\left(\kappa^2 - \kappa'^2\right)^2 - \left(\kappa^2 + \kappa'^2\right) + \varsigma^4 \right]^{1/2} \left[(\kappa - \kappa')^2 - 2\kappa\kappa' - \varsigma^2 \right] \\ &\times \theta(\kappa^2 - (|\kappa'| + \varsigma)^2) R(\varsigma,\kappa',\kappa) \rho(\kappa',\mu) \end{aligned}$$

it comes from the γ^{μ} in the quark-gluon kernel

Where is positivity violation coming from?

In the present model from the $-2\kappa\kappa'$ term in

$$\begin{aligned} \sigma(\kappa,\mu) &= C_F \left(\frac{g}{4\pi}\right)^2 \int_{-\infty}^{+\infty} d\kappa' \frac{1}{2\pi i} \left[K(\kappa,\kappa') - K^*(\kappa,\kappa') \right] \rho(\kappa',\mu) \\ &= \frac{\alpha_s}{\pi} \frac{1}{3} \int_{-\infty}^{+\infty} \frac{d\kappa'}{|\kappa|^3} \left[\left(\kappa^2 - \kappa'^2\right)^2 - \left(\kappa^2 + \kappa'^2\right) + \varsigma^4 \right]^{1/2} \left[(\kappa - \kappa')^2 - 2\kappa\kappa' - \varsigma^2 \right] \\ &\times \theta(\kappa^2 - (|\kappa'| + \varsigma)^2) R(\varsigma,\kappa',\kappa) \rho(\kappa',\mu) \end{aligned}$$

it comes from the γ^{μ} in the quark-gluon kernel

$$g^2_{\Lambda}D^{\mu\nu}_{\Lambda}(q)\Gamma^a_{\Lambda\nu}(q,p-q,p) = -g^2T^aF(q,p-q,p)\gamma^{\mu}$$

One-loop calculation

$$S_{\Lambda}^{-1}(p) = \not p - m_{\Lambda} - i \int \frac{d^4q}{(2\pi)^4} g_{\Lambda}^2 \gamma_{\mu} D_{\Lambda}^{\mu\nu}(q) S_{\Lambda}(p-q) T^a \Gamma_{\Lambda\nu}^a(q, p-q, p)$$

On the r.h.s. use:

$$D^{\mu\nu}(q) = \left(-g^{\mu\nu} + \xi \frac{q^{\mu}q^{\nu}}{q^2}\right) \frac{1}{q^2 - m_g^2 + i\varepsilon} \qquad \Gamma_{\mu}^a = g T^a \gamma_{\mu}$$

$$S(p) = \frac{1}{\not p - M + i\varepsilon} \to \rho(\kappa) = \delta(\kappa - M)$$

Positivity violation + complex-mass poles

Real part of complex mass

 α_s

Imaginary part of complex mass

 α_s

Real part of complex mass

 $\xi = 1$

Imaginary part of complex mass

 $\xi = 1$

 α_s

Complex-mass poles in propagators

Known since 1942

- P.A.M. Dirac, Proc. R. Soc. London, Ser.A 180, 1 (1942)
- -W. Pauli and F. Villars, Rev. Mod. Phys. 15,175 (1943); 21, 21 (1949)

Perturbative corrections to propagators introduce complex poles — ghosts (phantoms)

Baryon-meson Yukawa coupling — 25 years back*

Spin-1/2 field Yukawa coupled to spin-0 and spin-1 meson fields

$$\begin{split} \mathcal{L} &= \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - ig_{0\pi}\gamma_{5}\boldsymbol{\tau}\cdot\boldsymbol{\pi} - g_{0\omega}\gamma_{\mu}\omega^{\mu})\psi \\ &- \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} + \frac{1}{2}\partial_{\mu}\boldsymbol{\pi}\cdot\partial^{\mu}\boldsymbol{\pi} - \frac{1}{2}m_{\pi}^{2}\boldsymbol{\pi}\cdot\boldsymbol{\pi} \\ &F^{\mu\nu} = \partial^{\mu}\omega^{\nu} - \partial^{\nu}\omega^{\mu} \end{split}$$

Model is renormalizable because massive vector mesons couple to a conserved current (baryon current)

* C.A. da Rocha, G.K., L. Wilets, NPA 616, 625 (1997)
M.E. Bracco, A. Eiras, G.K., L. Wilets, PRC 49,1299 (1994)
G.K., M. Nielsen, R.D. Puff, L. Wilets, PRC 47, 2485 (1993)

Coupled system of DSE

I. Rainbow approximation for the fermion

— use bare meson propagators, bare baryon-meson vertices

$$D_{\pi}(p^2) = \frac{1}{p^2 - m_{\pi}^2 + i\epsilon}$$

$$\frac{g_{\pi}^2}{4\pi} = 14.4 \qquad m_{\pi} = 0.144 M$$
$$\frac{g_{\omega}^2}{4\pi} = 6.36 \qquad m_{\omega} = 0.833 M$$

$$D^{\mu\nu}_{\omega}(p^2) = \left(-g^{\mu\nu} + \frac{p^{\mu}p^{\nu}}{m^2_{\omega}}\right)\frac{1}{p^2 - m^2_{\omega} + i\epsilon}$$

Change in notation: $\overline{\rho}(\kappa) \rightarrow \overline{A}(\kappa)$

Change in notation: $\overline{\rho}(\kappa) \to \overline{A}(\kappa)$

Change in notation: $\overline{\rho}(\kappa) \rightarrow \overline{A}(\kappa)$

Perfect!

Change in notation: $\overline{\rho}(\kappa) \rightarrow \overline{A}(\kappa)$

Perfect!

NOT QUITE

 $z/M = 0.73 \pm 1.25 \, i$

 $\text{Res}(z) = -0.75 \pm 0.32 \, i$

In addition to the pole and branch cut on the real axis

— a pair of complex-mass poles

 $z/M = 0.73 \pm 1.25 i$ $\text{Res}(z) = -0.75 \pm 0.32 i$

Change in notation: $\overline{\rho}(\kappa) \rightarrow \overline{A}(\kappa)$

Change in notation: $\overline{\rho}(\kappa) \to \overline{A}(\kappa)$

Change in notation: $\overline{\rho}(\kappa) \rightarrow \overline{A}(\kappa)$

Change in notation:
$$\overline{\rho}(\kappa) \to \overline{A}(\kappa)$$

Spectral function is negative


```
Change in notation:
\overline{\rho}(\kappa) \rightarrow \overline{A}(\kappa)
```

Spectral function is negative

Positivity violation!

- again pair of complex-conjugated poles

- again pair of complex-conjugated poles

$$z/M = 5.7 \pm 11.8 i$$

- again pair of complex-conjugated poles

$$z/M = 5.7 \pm 11.8 i$$

 $\text{Res}(z) = -1.04 \pm 0.22 i$

In addition to the pole and branch cut on the real axis

— again pair of complex-conjugated poles

$$z/M = 5.7 \pm 11.8 i$$

 $\text{Res}(z) = -1.04 \pm 0.22 i$

$$z/M = 1.05 \pm 1.26 i$$

$$\text{Res}(z) = -0.77 \mp 0.20 \, i$$

Including both mesons

$$z/M = 1.05 \pm 1.26 i$$

$$\text{Res}(z) = -0.77 \mp 0.20 \, i$$

2. Coupled DSE baryon + meson — use bare vertices

	Self-consistent		Not self-consistent	
R	$1.06 \pm 1.25i$	$ 0.77\pm0.20i$	$1.05 \pm 1.26i$	$-$ 0.77 \pm 0.20 i
10	-1.04	-1.08	-1.44	-1.13
11	-3.50	-1.30	-5.68	- 1.49

FIG. 3. Self-consistent (solid curve) and not self-consistent (dashed curve) π spectral function $\rho_{\pi R}(\sigma^2)$. σ^2 is in units of M^2 and $\rho_{\pi R}(\sigma^2)$ is in units of M^{-2} .

FIG. 4. Self-consistent (solid curve) and not self-consistent (dashed curve) ω spectral function $\rho_{\omega R}(\sigma^2)$. The units are the same as in Fig. 3.

Complex-mass poles in all propagators

	Self-consistent		Not self-consistent	
R	$1.06 \pm 1.25i$	$ 0.77\pm0.20i$	$1.05 \pm 1.26i$	$ 0.77\pm0.20i$
M0	-1.04	-1.08	-1.44	-1.13
MI	-3.50	- 1.30	-5.68	- 1.49

FIG. 3. Self-consistent (solid curve) and not self-consistent (dashed curve) π spectral function $\rho_{\pi R}(\sigma^2)$. σ^2 is in units of M^2 and $\rho_{\pi R}(\sigma^2)$ is in units of M^{-2} .

FIG. 4. Self-consistent (solid curve) and not self-consistent (dashed curve) ω spectral function $\rho_{\omega R}(\sigma^2)$. The units are the same as in Fig. 3.

Can one kill the complex-mass poles?

YES - use form factors that soften the ultraviolet

G.K., M. Nielsen, R.D. Puff, L. Wilets, PRC 47, 2485 (1993)

Conclusions

- Can get positivity violation with a model whose relation to QCD is very remote, to say the least
- Can get positivity violation and complex-mass poles
 - in a <u>one-loop calculation</u> (can fit lattice data)
- Can get positivity violation and complex-mass poles in <u>meson-baryon models</u>

Suppose one finds positivity violation and/or complex-mass poles in a QCD model/truncation

— how can one tell whether they are real features of QCD or are due to approximation/truncation used?

Need detailed comparisons with lattice (when possible), gauge symmetry constraints, if physical are there observables related to complex poles (fragmentation)?

Funding

