POSITIVITY VIOLATION INTHE MINKOWSKI SPACE QUARK PROPAGATOR

IFT-UNESP Instituto de fisica tedorica

Gastão Krein
Instituto de Física Teórica, São Paulo

Nonperturbative QFT in Euclidean and Minkowski

Coimbra, I0-12 September 2019

Outline

- Motivation

- Spectral representation
-Toy-model calculation
- Positivity violation
- Complex-mass poles
- Conclusions

Work with students

- Caroline Costa,Vivian Luiz, Enzo Solis

Why Minkowski space?

I. Time-like form factors
2. Inelastic processes, particle production
3. Fragmentation functions
4. Many-body transport properties
5. Confinement, positivity violation, complex-mass poles

Work somewhat related to work of:
— Biernat et al., Binosi et al., Carbonel et al., Cornwall, Dudal et al., Frederico et al., Lowdon, Salmè et al., Sauli, Siringo, Wschebor et al, ...

Fermion propagator - model-independent features

I. Spectral representation
2. Positivity
3. One instead of two spectral functions
4. Getting rid of the Dirac structure
5. No zeros no poles or zeros off real axis
6. Renormalization

Fermion propagator
 - review, notation

Renormalized propagator

 (omit ren. scale μ)$$
\psi_{\Lambda}(x)=\sqrt{Z_{\psi}} \psi(x) \quad m_{\Lambda}=Z_{m} m
$$

$$
\begin{aligned}
i S_{\alpha \beta}(x-y) & =\langle\Omega| T\left[\psi_{\alpha}(x) \bar{\psi}_{\beta}(y)\right]|\Omega\rangle \\
& =Z_{\psi}^{-1} i S_{\Lambda \alpha \beta}(x-y)
\end{aligned}
$$

Will work in momentum space

$$
S_{\alpha \beta}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot(x-y)} S_{\alpha \beta}(p)
$$

Lorentz + parity symmetries

$$
\begin{aligned}
S_{\Lambda}(p) & =\frac{1}{A_{\Lambda}\left(p^{2}\right) \not p-B_{\Lambda}\left(p^{2}\right)+i \varepsilon}=\frac{1}{A_{\Lambda}\left(p^{2}\right)} \frac{1}{\not p-M_{\Lambda}\left(p^{2}\right)+i \varepsilon} \\
& =Z_{\psi} S(p)=Z_{\psi} \frac{1}{A\left(p^{2}\right) p p-B\left(p^{2}\right)+i \varepsilon} \\
& =\frac{Z_{\psi}}{A\left(p^{2}\right)} \frac{1}{p p-M\left(p^{2}\right)+i \varepsilon}
\end{aligned}
$$

$$
M_{\Lambda}\left(p^{2}\right)=\frac{B_{\Lambda}\left(p^{2}\right)}{A_{\Lambda}\left(p^{2}\right)}\left\{\begin{array}{l}
B\left(p^{2}\right)=Z_{\psi} B_{\Lambda}\left(p^{2}\right) \\
A\left(p^{2}\right)=Z_{\psi} A_{\Lambda}\left(p^{2}\right)
\end{array} \quad \circlearrowright M\left(p^{2}\right)=M_{\Lambda}\left(p^{2}\right)\right.
$$

Spectral representation

- CPT \& Lorentz symm. + unitarity

$$
S_{\Lambda}(p)=\int_{0}^{\infty} d s^{2} \frac{\rho_{1 \Lambda}\left(s^{2}\right) p p+\rho_{2 \Lambda}\left(s^{2}\right)}{p^{2}-s^{2}+i \varepsilon}
$$

Positivity constraints

$$
\begin{gathered}
\rho_{1 \Lambda}\left(s^{2}\right) \geq 0 \\
s \rho_{1 \Lambda}\left(s^{2}\right)-\rho_{2 \Lambda}\left(s^{2}\right) \geq 0
\end{gathered}
$$

Instead of two, one spectral function

Instead of two, one spectral function

$$
\begin{aligned}
& S_{\Lambda}(p)=\int_{-\infty}^{+\infty} d \kappa \rho_{\Lambda}(\kappa) \frac{p p+\kappa}{p^{2}-\kappa^{2}+i \varepsilon} \\
& \rho_{\Lambda 1}\left(\kappa^{2}\right)=\frac{\rho_{\Lambda}(\kappa)+\rho_{\Lambda}(-\kappa)}{2 \kappa} \\
& \rho_{\Lambda 2}\left(\kappa^{2}\right)=\frac{\rho_{\Lambda}(\kappa)-\rho_{\Lambda}(-\kappa)}{2}
\end{aligned}
$$

Instead of two, one spectral function

$$
\begin{aligned}
& S_{\Lambda}(p)=\int_{-\infty}^{+\infty} d \kappa \rho_{\Lambda}(\kappa) \frac{p p+\kappa}{p^{2}-\kappa^{2}+i \varepsilon} \\
& \rho_{\Lambda 1}\left(\kappa^{2}\right)=\frac{\rho_{\Lambda}(\kappa)+\rho_{\Lambda}(-\kappa)}{2 \kappa} \\
& \rho_{\Lambda 2}\left(\kappa^{2}\right)=\frac{\rho_{\Lambda}(\kappa)-\rho_{\Lambda}(-\kappa)}{2}
\end{aligned}
$$

$$
\rho_{\Lambda}(\kappa) \geq 0
$$

Getting rid of Dirac structure

Getting rid of Dirac structure

Projection operators

Getting rid of Dirac structure

Projection operators $\quad p_{ \pm}(p)=\frac{1}{2}\left(1 \pm \frac{p}{w(p)}\right) \quad$ where $\quad w(p) \equiv \begin{cases}\sqrt{p^{2}}=\sqrt{\left(p^{0}\right)^{2}-p^{2}}, & p^{2}>0 \\ i \sqrt{-p^{2}}=i \sqrt{p^{2}-\left(p^{0}\right)^{2}}, & p^{2}<0\end{cases}$

Getting rid of Dirac structure

Projection operators $\quad P_{ \pm}(p)=\frac{1}{2}\left(1 \pm \frac{p}{w(p)}\right)$ where $w(p) \equiv \begin{cases}\sqrt{p^{2}}=\sqrt{\left(p^{0}\right)^{2}-p^{2}}, & p^{2}>0 \\ i \sqrt{-p^{2}}=i \sqrt{p^{2}-\left(p^{0}\right)^{2}}, & p^{2}<0\end{cases}$

$$
S_{\Lambda}(p)=P_{+}(p) \widetilde{S}_{\Lambda}(w(p)+i \varepsilon)+P_{+}(p) \widetilde{S}_{\Lambda}(-w(p)-i \varepsilon)
$$

Getting rid of Dirac structure

Projection operators $\quad P_{ \pm}(p)=\frac{1}{2}\left(1 \pm \frac{p}{w(p)}\right)$ where $w(p) \equiv \begin{cases}\sqrt{p^{2}}=\sqrt{\left(p^{0}\right)^{2}-p^{2}}, & p^{2}>0 \\ i \sqrt{-p^{2}}=i \sqrt{p^{2}-\left(p^{0}\right)^{2}}, & p^{2}<0\end{cases}$

$$
S_{\Lambda}(p)=P_{+}(p) \widetilde{S}_{\Lambda}(w(p)+i \varepsilon)+P_{+}(p) \widetilde{S}_{\Lambda}(-w(p)-i \varepsilon)
$$

$$
\widetilde{S}_{\Lambda}(z)=\int_{-\infty}^{+\infty} d \kappa \frac{\rho_{\Lambda}(\kappa)}{z-\kappa}
$$

$$
z= \pm(w(p)+i \varepsilon)
$$

Renormalized x unrenormalized spectral functions

Renormalized x unrenormalized

 spectral functions$$
\psi_{\Lambda}(x)=\sqrt{Z_{\psi}} \psi(x)
$$

Renormalized x unrenormalized

 spectral functions$$
\psi_{\Lambda}(x)=\sqrt{Z_{\psi}} \psi(x) \quad \rho_{\Lambda}(\kappa)=Z_{\psi} \rho(\kappa) \xrightarrow{Z_{\psi}=Z_{\psi}(\mu)} \rho(\kappa)=\rho(\kappa, \mu)
$$

Renormalized x unrenormalized

 spectral functions$$
\psi_{\Lambda}(x)=\sqrt{Z_{\psi}} \psi(x) \longrightarrow \rho_{\Lambda}(\kappa)=Z_{\psi} \rho(\kappa) \xrightarrow{Z_{\psi}=Z_{\psi}(\mu)} \rho(\kappa)=\rho(\kappa, \mu)
$$

From anticommutator

$$
\left\{\psi_{\Lambda \alpha}\left(x^{0}, x\right), \bar{\psi}_{\Lambda \beta}\left(y^{0}, y\right)\right\}_{x^{0}=y^{0}}=i \delta^{(3)}(x-y)\left(\gamma^{0}\right)_{\alpha \beta}
$$

Renormalized x unrenormalized

 spectral functions$$
\psi_{\Lambda}(x)=\sqrt{Z_{\psi}} \psi(x) \quad \rho_{\Lambda}(\kappa)=Z_{\psi} \rho(\kappa) \xrightarrow{Z_{\psi}=Z_{\psi}(\mu)} \rho(\kappa)=\rho(\kappa, \mu)
$$

From anticommutator $\quad\left\{\psi_{\Lambda \alpha}\left(x^{0}, x\right), \bar{\psi}_{\Lambda \beta}\left(y^{0}, y\right)\right\}_{x^{0}=y^{0}}=i \delta^{(3)}(x-y)\left(\gamma^{0}\right)_{\alpha \beta}$

$$
\int_{-\infty}^{+\infty} d \kappa \rho_{\Lambda}(\kappa)=1
$$

Renormalized x unrenormalized

 spectral functions$$
\psi_{\Lambda}(x)=\sqrt{Z_{\psi}} \psi(x) \quad \rho_{\Lambda}(\kappa)=Z_{\psi} \rho(\kappa) \xrightarrow{Z_{\psi}=Z_{\psi}(\mu)} \rho(\kappa)=\rho(\kappa, \mu)
$$

From anticommutator $\quad\left\{\boldsymbol{\psi}_{\Lambda \alpha}\left(x^{0}, x\right), \overline{\boldsymbol{\psi}}_{\Lambda \beta}\left(y^{0}, y\right)\right\}_{x^{0}=y^{0}}=i \delta^{(3)}(x-y)\left(\gamma^{0}\right)_{\alpha \beta}$

$$
\int_{-\infty}^{+\infty} d \kappa \rho_{\Lambda}(\kappa)=1 \quad \longrightarrow \quad Z_{\psi}^{-1}(\mu)=\int_{-\infty}^{+\infty} d \kappa \rho(\kappa, \mu)
$$

Renormalized x unrenormalized

 spectral functions$$
\psi_{\Lambda}(x)=\sqrt{Z_{\psi}} \psi(x) \quad \rho_{\Lambda}(\kappa)=Z_{\psi} \rho(\kappa) \xrightarrow{Z_{\psi}=Z_{\psi}(\mu)} \rho(\kappa)=\rho(\kappa, \mu)
$$

From anticommutator $\quad\left\{\boldsymbol{\psi}_{\Delta \alpha}\left(x^{0}, x\right), \overline{\boldsymbol{\psi}}_{\Lambda \beta}\left(y^{0}, y\right)\right\}_{x^{0}=y^{0}}=i \delta^{(3)}(x-y)\left(\gamma^{0}\right)_{\alpha \beta}$

$$
\int_{-\infty}^{+\infty} d \kappa \rho_{\Lambda}(\kappa)=1 \quad \longrightarrow \quad Z_{\psi}^{-1}(\mu)=\int_{-\infty}^{+\infty} d \kappa \rho(\kappa, \mu)
$$

$$
0 \leq Z_{\psi}<1
$$

Self-energy

$$
S_{\Lambda}^{-1}(p)=\left[S_{\Lambda}^{(0)}(p)\right]^{-1}-\Sigma_{\Lambda}(p)
$$

Self-energy

$$
S_{\Lambda}^{-1}(p)=\left[S_{\Lambda}^{(0)}(p)\right]^{-1}-\Sigma_{\Lambda}(p)
$$

Spectral representation $\quad S_{\Lambda}^{-1}\left(p^{2}\right)=P_{+}(p) \widetilde{S}^{-1}(w(p)+i \varepsilon)+P_{-}(p) \widetilde{S}^{-1}(-w(p)-i \boldsymbol{\varepsilon})$

Self-energy

$$
S_{\Lambda}^{-1}(p)=\left[S_{\Lambda}^{(0)}(p)\right]^{-1}-\Sigma_{\Lambda}(p)
$$

Spectral representation

$$
S_{\Lambda}^{-1}\left(p^{2}\right)=P_{+}(p) \widetilde{S}^{-1}(w(p)+i \varepsilon)+P_{-}(p) \widetilde{S}^{-1}(-w(p)-i \varepsilon)
$$

$$
\widetilde{S}_{\Lambda}^{-1}(z)=z-m_{\Lambda}-\int_{-\infty}^{+\infty} d \kappa \frac{\sigma_{\Lambda}(\kappa)}{z-\kappa}
$$

Self-energy

$$
S_{\Lambda}^{-1}(p)=\left[S_{\Lambda}^{(0)}(p)\right]^{-1}-\Sigma_{\Lambda}(p)
$$

Spectral representation $\quad S_{\Lambda}^{-1}\left(p^{2}\right)=P_{+}(p) \widetilde{S}^{-1}(w(p)+i \boldsymbol{\varepsilon})+P_{-}(p) \widetilde{S}^{-1}(-w(p)-i \boldsymbol{\varepsilon})$

$$
\widetilde{S}_{\Lambda}^{-1}(z)=z-m_{\Lambda}-\int_{-\infty}^{+\infty} d \kappa \frac{\sigma_{\Lambda}(\kappa)}{z-\kappa}
$$

Renormalized self-energy

Self-energy

$$
S_{\Lambda}^{-1}(p)=\left[S_{\Lambda}^{(0)}(p)\right]^{-1}-\Sigma_{\Lambda}(p)
$$

Spectral representation

$$
S_{\Lambda}^{-1}\left(p^{2}\right)=P_{+}(p) \widetilde{S}^{-1}(w(p)+i \varepsilon)+P_{-}(p) \widetilde{S}^{-1}(-w(p)-i \varepsilon)
$$

$$
\widetilde{S}_{\Lambda}^{-1}(z)=z-m_{\Lambda}-\int_{-\infty}^{+\infty} d \kappa \frac{\sigma_{\Lambda}(\kappa)}{z-\kappa}
$$

Renormalized self-energy

$$
\begin{gathered}
\widetilde{S}^{-1}(z)=Z_{\psi} \widetilde{S}_{\Lambda}^{-1}(z)=Z_{\psi}\left(z-Z_{m} m\right)-\int_{-\infty}^{+\infty} d \kappa \frac{\sigma(\kappa)}{z-\kappa} \\
\sigma_{\Lambda}(\kappa)=Z_{\psi}^{-1}(\mu) \sigma(\kappa, \mu)
\end{gathered}
$$

Propagator has no zeros or poles off the real axis

Propagator has no zeros or poles off the real axis

No zero off real axis

Propagator has no zeros or poles off the real axis

No zero off real axis $z=x+i y, \quad x, y$ real

Propagator has no zeros or poles off the real axis

No zero off real axis $z=x+i y, \quad x, y$ real

$$
\begin{aligned}
\tilde{S}(x+i y) & =\int_{-\infty}^{+\infty} d \kappa \frac{\rho(\kappa)}{x+i y-\kappa} \\
& =(x-i y) \int_{-\infty}^{+\infty} d \kappa \frac{\rho(\kappa)}{(x-\kappa)^{2}+y^{2}}
\end{aligned}
$$

Propagator has no zeros or poles off the real axis

No zero off real axis $z=x+i y, \quad x, y$ real

$$
\begin{aligned}
\tilde{S}(x+i y) & =\int_{-\infty}^{+\infty} d \kappa \frac{\rho(\kappa)}{x+i y-\kappa} \\
& =(x-i y) \int_{-\infty}^{+\infty} d \kappa \frac{\rho(\kappa)}{(x-\kappa)^{2}+y^{2}}
\end{aligned}
$$

Propagator has no zeros or poles off the real axis

No zero off real axis $z=x+i y, \quad x, y$ real

$$
\begin{aligned}
\tilde{S}(x+i y) & =\int_{-\infty}^{+\infty} d \kappa \frac{\rho(\kappa)}{x+i y-\kappa} \\
& =(x-i y) \int_{-\infty}^{+\infty} d \kappa \frac{\rho(\kappa)}{(x-\kappa)^{2}+y^{2}}
\end{aligned}
$$

$$
\operatorname{Im} \widetilde{S}(z)=-y \int_{-\infty}^{+\infty} d \kappa \frac{\rho(\kappa)}{(x-\kappa)^{2}+y^{2}}
$$

Propagator has no zeros or poles off the real axis

No zero off real axis $z=x+i y, \quad x, y$ real

$$
\begin{aligned}
\tilde{S}(x+i y) & =\int_{-\infty}^{+\infty} d \kappa \frac{\rho(\kappa)}{x+i y-\kappa} \\
& =(x-i y) \int_{-\infty}^{+\infty} d \kappa \frac{\rho(\kappa)}{(x-\kappa)^{2}+y^{2}}
\end{aligned}
$$

$$
\operatorname{Im} \widetilde{S}(z)=-y \int_{-\infty}^{+\infty} d \kappa \frac{\rho(\kappa)}{(x-\kappa)^{2}+y^{2}} \quad \text { Zero only if } y=0 \text {, as } \rho>0
$$

Propagator has no zeros or poles off the real axis

No zero off real axis $z=x+i y, \quad x, y$ real

$$
\begin{aligned}
& \begin{aligned}
\tilde{S}(x+i y) & =\int_{-\infty}^{+\infty} d \kappa \frac{\rho(\kappa)}{x+i y-\kappa} \\
& =(x-i y) \int_{-\infty}^{+\infty} d \kappa \frac{\rho(\kappa)}{(x-\kappa)^{2}+y^{2}}
\end{aligned} \\
& \operatorname{Im} \widetilde{S}(z)=-y \int_{-\infty}^{+\infty} d \kappa \frac{\rho(\kappa)}{(x-\kappa)^{2}+y^{2}} \quad \text { Zero only if } y=0, \text { as } \rho>0
\end{aligned}
$$

No poles off real axis
$\tilde{S}^{-1}(z)$ does not have zeros off real axis

Renormalization

- set renormalisation condition

Renormalization

- set renormalisation condition
I) At some spacelike point

Renormalization

- set renormalisation condition

I) At some spacelike point

$$
S^{-1}(p, \mu) \xrightarrow{p^{2}=-\mu^{2}} p p-m(\mu)
$$

Renormalization

- set renormalisation condition

I) At some spacelike point

$$
S^{-1}(p, \mu) \xrightarrow{p^{2}=-\mu^{2}} p p-m(\mu)
$$

2) On mass-shell, a timelike point

Renormalization

- set renormalisation condition

I) At some spacelike point

$$
S^{-1}(p, \mu) \xrightarrow{p^{2}=-\mu^{2}} p p-m(\mu)
$$

2) On mass-shell, a timelike point

$$
p^{2}=\mu^{2} \equiv M_{\mathrm{p}}^{2}>0
$$

I) At some spacelike point

$$
S^{-1}(p, \mu) \xrightarrow{p^{2}=-\mu^{2}} p p-m(\mu)
$$

I) At some spacelike point

$$
S^{-1}(p, \mu) \xrightarrow{p^{2}=-\mu^{2}} p p-m(\mu)
$$

Using the projection operators
I) At some spacelike point

$$
S^{-1}(p, \mu) \xrightarrow{p^{2}=-\mu^{2}} \not p-m(\mu)
$$

Using the projection operators

$$
\begin{aligned}
& Z_{\psi}(\mu)=1-\int_{-\infty}^{+\infty} d \kappa \frac{\sigma(\kappa, \mu)}{\kappa^{2}+\mu^{2}} \\
& Z_{\psi}(\mu) Z_{m}(\mu) m(\mu)=m(\mu)+\int_{-\infty}^{+\infty} d \kappa \frac{\kappa \sigma(\kappa, \mu)}{\kappa^{2}+\mu^{2}}
\end{aligned}
$$

I) At some spacelike point

$$
S^{-1}(p, \mu) \xrightarrow{p^{2}=-\mu^{2}} p p-m(\mu)
$$

Using the projection operators

$$
\begin{aligned}
& Z_{\psi}(\mu)=1-\int_{-\infty}^{+\infty} d \kappa \frac{\sigma(\kappa, \mu)}{\kappa^{2}+\mu^{2}} \\
& Z_{\psi}(\mu) Z_{m}(\mu) m(\mu)=m(\mu)+\int_{-\infty}^{+\infty} d \kappa \frac{\kappa \sigma(\kappa, \mu)}{\kappa^{2}+\mu^{2}}
\end{aligned}
$$

Eliminate the renormalization constants

I) At some spacelike point

$$
S^{-1}(p, \mu) \xrightarrow{p^{2}=-\mu^{2}} p p-m(\mu)
$$

Using the projection operators

$$
\begin{aligned}
& Z_{\psi}(\mu)=1-\int_{-\infty}^{+\infty} d \kappa \frac{\sigma(\kappa, \mu)}{\kappa^{2}+\mu^{2}} \\
& Z_{\psi}(\mu) Z_{m}(\mu) m(\mu)=m(\mu)+\int_{-\infty}^{+\infty} d \kappa \frac{\kappa \sigma(\kappa, \mu)}{\kappa^{2}+\mu^{2}}
\end{aligned}
$$

Eliminate the renormalization constants

$$
\tilde{S}^{-1}(z, \mu)=z-m(\mu)-\left(z^{2}+\mu^{2}\right) \int_{-\infty}^{+\infty} d \kappa \frac{\sigma(\kappa, \mu)}{(z-\kappa)\left(\kappa^{2}+\mu^{2}\right)}
$$

2) On mass-shell, a timelike point

$$
p^{2}=\mu^{2} \equiv M_{\mathrm{p}}^{2}>0
$$

2) On mass-shell, a timelike point

$$
p^{2}=\mu^{2} \equiv M_{\mathrm{p}}^{2}>0
$$

$$
\begin{aligned}
& Z_{\psi}^{\mathrm{os}}\left(M_{\mathrm{p}}\right)=1-\int_{-\infty}^{+\infty} d \kappa \frac{\sigma\left(\kappa, M_{p}\right)}{\left(M_{\mathrm{p}}-\kappa\right)^{2}} \\
& Z_{\psi}^{\mathrm{os}}\left(M_{\mathrm{p}}\right)\left[M_{\mathrm{p}}-Z_{m}^{\mathrm{os}} m\left(M_{\mathrm{p}}\right)\right]=\int_{-\infty}^{+\infty} d \kappa \frac{\sigma(\kappa, \mu)}{M_{\mathrm{p}}-\kappa}
\end{aligned}
$$

2) On mass-shell, a timelike point

$$
p^{2}=\mu^{2} \equiv M_{\mathrm{p}}^{2}>0
$$

$$
\begin{aligned}
& Z_{\psi}^{\mathrm{os}}\left(M_{\mathrm{p}}\right)=1-\int_{-\infty}^{+\infty} d \kappa \frac{\sigma\left(\kappa, M_{p}\right)}{\left(M_{\mathrm{p}}-\kappa\right)^{2}} \\
& Z_{\psi}^{\mathrm{os}}\left(M_{\mathrm{p}}\right)\left[M_{\mathrm{p}}-Z_{m}^{\mathrm{os}} m\left(M_{\mathrm{p}}\right)\right]=\int_{-\infty}^{+\infty} d \kappa \frac{\sigma(\kappa, \mu)}{M_{\mathrm{p}}-\kappa}
\end{aligned}
$$

$$
\widetilde{S}_{\mathrm{os}}^{-1}\left(z, M_{p}\right)=\left(z-M_{p}\right)\left[1-\left(z-M_{p}\right) \int_{-\infty}^{+\infty} d \kappa \frac{\sigma\left(\kappa, M_{p}\right)}{(z-\kappa)\left(\kappa-M_{p}\right)^{2}}\right]
$$

For numerics:

For numerics:

Spectral function of the self-energy

For numerics:

Spectral function of the self-energy

$$
\begin{aligned}
\sigma(\kappa) & =\frac{1}{2 \pi i}\left[\widetilde{S}^{-1}(\kappa+i \varepsilon)-\widetilde{S}^{-1}(\kappa-i \varepsilon)\right] \\
& =\left|\widetilde{S}^{-1}(\kappa+i \varepsilon)\right|^{2} \rho(\kappa)
\end{aligned}
$$

For numerics:

Spectral function of the self-energy

$$
\begin{aligned}
\sigma(\kappa) & =\frac{1}{2 \pi i}\left[\widetilde{S}^{-1}(\kappa+i \varepsilon)-\tilde{S}^{-1}(\kappa-i \varepsilon)\right] \\
& =\left|\widetilde{S}^{-1}(\kappa+i \varepsilon)\right|^{2} \rho(\kappa)
\end{aligned}
$$

Spectral function of the propagator

For numerics:

Spectral function of the self-energy

$$
\begin{aligned}
\sigma(\kappa) & =\frac{1}{2 \pi i}\left[\tilde{S}^{-1}(\kappa+i \varepsilon)-\widetilde{S}^{-1}(\kappa-i \varepsilon)\right] \\
& =\left|\widetilde{S}^{-1}(\kappa+i \varepsilon)\right|^{2} \rho(\kappa)
\end{aligned}
$$

Spectral function of the propagator

$$
\begin{aligned}
& \rho(\kappa)= \frac{i}{2 \pi}[\widetilde{S}(\kappa+i \varepsilon)-\widetilde{S}(\kappa-i \varepsilon)]=\frac{i}{2 \pi}\left\{\left[\widetilde{S}^{-1}(\kappa+i \varepsilon)\right]^{-1}-\left[\widetilde{S}^{-1}(\kappa-i \varepsilon)\right]^{-1}\right\} \\
&= R\left(M_{p}\right) \delta\left(\kappa-M_{p}\right)+\bar{\rho}(\kappa) \\
& \bar{\rho}(\kappa)=\left|\widetilde{S}^{-1}(\kappa+i \varepsilon)\right|^{-2} \sigma(\kappa)
\end{aligned}
$$

An explicit calculation
 - use a toy model

1. Dyson-Schwinger equation
2. Model for quark-gluon kernel
3. Positivity violation
4. No complex poles
5. Perturbation theory

Toy model

Toy model

Dyson-Schwinger equation for the quark propagator

Toy model

Dyson-Schwinger equation for the quark propagator

$$
S_{\Lambda}^{-1}(p)=\not p-m_{\Lambda}-i \int \frac{d^{4} q}{(2 \pi)^{4}} g_{\Lambda}^{2} \gamma_{\mu} D_{\Lambda}^{\mu v}(q) S_{\Lambda}(p-q) T^{a} \Gamma_{\Lambda v}^{a}(q, p-q, p)
$$

Toy model

Dyson-Schwinger equation for the quark propagator

$$
S_{\Lambda}^{-1}(p)=\not p-m_{\Lambda}-i \int \frac{d^{4} q}{(2 \pi)^{4}} g_{\Lambda}^{2} \gamma_{\mu} D_{\Lambda}^{\mu v}(q) S_{\Lambda}(p-q) T^{a} \Gamma_{\Lambda v}^{a}(q, p-q, p)
$$

Model quark-gluon kernel

Toy model

Dyson-Schwinger equation for the quark propagator

$$
S_{\Lambda}^{-1}(p)=\not p-m_{\Lambda}-i \int \frac{d^{4} q}{(2 \pi)^{4}} g_{\Lambda}^{2} \gamma_{\mu} D_{\Lambda}^{\mu v}(q) S_{\Lambda}(p-q) T^{a} \Gamma_{\Lambda v}^{a}(q, p-q, p)
$$

Model quark-gluon kernel

$$
\begin{gathered}
g_{\Lambda}^{2} D_{\Lambda}^{\mu v}(q) \Gamma_{\Lambda v}^{a}(q, p-q, p)=-g^{2} T^{a} F(q, p-q, p) \gamma^{\mu} \\
F(q, p-q, p)=\frac{R(q, p-q, p)}{q^{2}-\varsigma^{2}+i \varepsilon} \xrightarrow[\text { singularity-free }]{ } \quad \text { form-factor }
\end{gathered}
$$

Dyson-Schwinger equation for the model

Dyson-Schwinger equation for the model

$$
\tilde{S}^{-1}(w(p)+i \varepsilon)=Z_{\psi}(\mu)\left[w(p)-Z_{m}(\mu) m(\mu)\right]+C_{F}\left(\frac{g}{4 \pi}\right)^{2} \int_{-\infty}^{+\infty} d \kappa K(w(p), \kappa) \rho(\kappa, \mu)
$$

$$
C_{F}=T^{a} T^{a}=3 / 4
$$

$$
K(w(p), \kappa)=\frac{2}{w(p)} \frac{i}{\pi^{2}} \int d^{4} q\left[\frac{2 w(p) \kappa-p \cdot(p-q)}{(p-q)^{2}-\kappa^{2}+i \varepsilon}\right] \frac{R(q, p-q, p)}{q^{2}-\varsigma^{2}+i \varepsilon}
$$

Dyson-Schwinger equation for the model

$$
\tilde{S}^{-1}(w(p)+i \varepsilon)=Z_{\psi}(\mu)\left[w(p)-Z_{m}(\mu) m(\mu)\right]+C_{F}\left(\frac{g}{4 \pi}\right)^{2} \int_{-\infty}^{+\infty} d \kappa K(w(p), \kappa) \rho(\kappa, \mu)
$$

$$
C_{F}=T^{a} T^{a}=3 / 4
$$

$$
K(w(p), \kappa)=\frac{2}{w(p)} \frac{i}{\pi^{2}} \int d^{4} q\left[\frac{2 w(p) \kappa-p \cdot(p-q)}{(p-q)^{2}-\kappa^{2}+i \varepsilon}\right] \frac{R(q, p-q, p)}{q^{2}-\varsigma^{2}+i \varepsilon}
$$

Unknown is $\rho(\kappa, \mu)$

Solve by iteration

Iteration procedure

I. Make ansatz for $\rho(\kappa, \mu)$ and use it in:

$$
\begin{gathered}
\sigma(\kappa)=\frac{1}{2 \pi i}\left[\widetilde{s}^{-1}(\kappa+i \boldsymbol{\varepsilon})-\widetilde{S}^{-1}(\kappa-i \boldsymbol{\varepsilon})\right] \\
\sigma(\kappa, \mu)=C_{F}\left(\frac{g}{4 \pi}\right)^{2} \int_{-\infty}^{+\infty} d \kappa^{\prime} \frac{1}{2 \pi i}\left[K\left(\kappa, \kappa^{\prime}\right)-\kappa^{*}\left(\kappa, \kappa^{\prime}\right)\right] \rho\left(\kappa^{\prime}, \mu\right) \\
=\frac{\alpha_{s}}{\pi} \frac{1}{3} \int_{-\infty}^{+\infty} \frac{d \kappa^{\prime}}{\mid \kappa k^{\prime} 3}\left[\left(\kappa^{2}-\kappa^{\prime 2}\right)^{2}-\left(\kappa^{2}+\kappa^{\prime 2}\right)+\varsigma^{4}\right]^{1 / 2}\left[\left(\kappa-\kappa^{\prime}\right)^{2}-2 \kappa \kappa^{\prime}-\varsigma^{2}\right] \\
\times \theta\left(\kappa^{2}-\left(\left|\kappa^{\prime}\right|+\varsigma\right)^{2}\right) R\left(\varsigma\left(\kappa \kappa^{\prime}, \kappa\right) \rho\left(\kappa^{\prime}, \mu\right)\right.
\end{gathered}
$$

2. Find new $\rho(\kappa, \mu)$ from

$$
\begin{aligned}
& \rho(\kappa)=\frac{i}{2 \pi}[\widetilde{S}(\kappa+i \varepsilon)-\widetilde{S}(\kappa-i \varepsilon)]=\frac{i}{2 \pi}\left\{\left[\tilde{S}^{-1}(\kappa+i \varepsilon)\right]^{-1}-\left[\widetilde{S}^{-1}(\kappa-i \varepsilon)\right]^{-1}\right\} \\
&=R\left(M_{p}\right) \delta\left(\kappa-M_{p}\right)+\bar{\rho}(\kappa) \\
& \bar{\rho}(\kappa)=\left|\widetilde{S}^{-1}(\kappa+i \varepsilon)\right|^{-2} \sigma(\kappa)
\end{aligned}
$$

Need find pole mass $M_{p}(p)$ and residue $R\left(M_{p}\right)$
3. Cycle to convergence

Parameters

$$
\begin{gathered}
R(q, p-q, p)=f(q) f(p-q) f(p) \\
f(p)=\exp \left(-\left|p^{2}\right| / \omega^{2}\right)
\end{gathered}
$$

$$
\begin{array}{ll}
\mu=100 \mathrm{GeV}, & m(\mu)=0.005 \mathrm{GeV}, \quad \alpha_{s} / \pi=1.25 \\
\varsigma=0.6 \mathrm{GeV}, & \omega=2.5 \mathrm{GeV}
\end{array}
$$

Parameters

Form-factor in quark-gluon kernel

$$
F(q, p-q, p)=\frac{R(q, p-q, p)}{q^{2}-\varsigma^{2}+i \varepsilon}
$$

$$
\begin{gathered}
R(q, p-q, p)=f(q) f(p-q) f(p) \\
f(p)=\exp \left(-\left|p^{2}\right| / \omega^{2}\right)
\end{gathered}
$$

Numerical values

$$
\begin{array}{ll}
\mu=100 \mathrm{GeV}, & m(\mu)=0.005 \mathrm{GeV}, \quad \alpha_{s} / \pi=1.25 \\
\varsigma=0.6 \mathrm{GeV}, & \omega=2.5 \mathrm{GeV}
\end{array}
$$

Spectral function of the propagator

$$
\rho(\kappa)=R\left(M_{p}\right) \delta\left(\kappa-M_{p}\right)+\bar{\rho}(\kappa)
$$

Pole mass and residue: $\quad M_{p}=0.36 \mathrm{GeV} \quad R\left(M_{p}\right)=0.83$

Spectral function of the propagator

$$
\rho(\kappa)=R\left(M_{p}\right) \delta\left(\kappa-M_{p}\right)+\bar{\rho}(\kappa)
$$

Positivity Violation

Pole mass and residue: $\quad M_{p}=0.36 \mathrm{GeV} \quad R\left(M_{p}\right)=0.83$
NO complex-mass poles

Spectral function of the self-energy

Spectral function of the self-energy

Positivity Violation

$$
S(p)=\frac{1}{A\left(p^{2}\right) p-B\left(p^{2}\right)+i \varepsilon}=\frac{1}{A\left(p^{2}\right)} \frac{1}{p p-M\left(p^{2}\right)+i \varepsilon}
$$

$A\left(p^{2}\right)$

$B\left(p^{2}\right)$

$M\left(p^{2}\right)$

Where is positivity violation coming from?

In the present model from the $-2 \kappa \kappa^{\prime}$ term in

$$
\begin{aligned}
\sigma(\kappa, \mu)= & C_{F}\left(\frac{g}{4 \pi}\right)^{2} \int_{-\infty}^{+\infty} d \kappa^{\prime} \frac{1}{2 \pi i}\left[K\left(\kappa, \kappa^{\prime}\right)-\kappa^{*}\left(\kappa, \kappa^{\prime}\right)\right] \rho\left(\kappa^{\prime}, \mu\right) \\
= & \frac{\alpha_{s}}{\pi} \frac{1}{3} \int_{-\infty}^{+\infty} \frac{d \kappa^{\prime}}{|\kappa|^{3}}\left[\left(\kappa^{2}-\kappa^{\prime 2}\right)^{2}-\left(\kappa^{2}+\kappa^{\prime 2}\right)+\varsigma^{4}\right]^{1 / 2}\left[\left(\kappa-\kappa^{\prime}\right)^{2}-2 \kappa \kappa^{\prime}-\varsigma^{2}\right] \\
& \times \theta\left(\kappa^{2}-\left(\left|\kappa^{\prime}\right|+\varsigma\right)^{2}\right) R\left(\varsigma, \kappa^{\prime}, \kappa\right) \rho\left(\kappa^{\prime}, \mu\right)
\end{aligned}
$$

it comes from the γ^{μ} in the quark-gluon kernel

Where is positivity violation coming from?

In the present model from the $-2 \kappa \kappa^{\prime}$ term in

$$
\begin{aligned}
\sigma(\kappa, \mu)= & C_{F}\left(\frac{g}{4 \pi}\right)^{2} \int_{-\infty}^{+\infty} d \kappa^{\prime} \frac{1}{2 \pi i}\left[K\left(\kappa, \kappa^{\prime}\right)-\kappa^{*}\left(\kappa, \kappa^{\prime}\right)\right] \rho\left(\kappa^{\prime}, \mu\right) \\
= & \frac{\alpha_{s}}{\pi} \frac{1}{3} \int_{-\infty}^{+\infty} \frac{d \kappa^{\prime}}{|\kappa|^{3}}\left[\left(\kappa^{2}-\kappa^{\prime 2}\right)^{2}-\left(\kappa^{2}+\kappa^{\prime 2}\right)+\varsigma^{4}\right]^{1 / 2}\left[\left(\kappa-\kappa^{\prime}\right)^{2}-2 \kappa \kappa^{\prime}-\varsigma^{2}\right] \\
& \times \theta\left(\kappa^{2}-\left(\left|\kappa^{\prime}\right|+\varsigma\right)^{2}\right) R\left(\varsigma, \kappa^{\prime}, \kappa\right) \rho\left(\kappa^{\prime}, \mu\right)
\end{aligned}
$$

it comes from the γ^{μ} in the quark-gluon kernel

$$
g_{\Lambda}^{2} D_{\Lambda}^{\mu v}(q) \Gamma_{\Lambda v}^{a}(q, p-q, p)=-g^{2} T^{a} F(q, p-q, p) \gamma^{\mu}
$$

One-loop calculation

$$
S_{\Lambda}^{-1}(p)=\not p-m_{\Lambda}-i \int \frac{d^{4} q}{(2 \pi)^{4}} g_{\Lambda}^{2} \gamma_{\mu} D_{\Lambda}^{\mu v}(q) S_{\Lambda}(p-q) T^{a} \Gamma_{\Lambda v}^{a}(q, p-q, p)
$$

On the r.h.s. use:

$$
\begin{array}{ll}
D^{\mu v}(q)=\left(-g^{\mu v}+\xi \frac{q^{\mu} q^{\nu}}{q^{2}}\right) \frac{1}{q^{2}-m_{g}^{2}+i \varepsilon} & \Gamma_{\mu}^{a}=g T^{a} \gamma_{\mu} \\
S(p)=\frac{1}{\not p-M+i \varepsilon} \rightarrow \rho(\kappa)=\delta(\kappa-M) &
\end{array}
$$

Positivity violation + complex-mass poles

Real part of complex mass

Imaginary part of complex mass

Real part of complex mass

Imaginary part of complex mass

Complex-mass poles in propagators

Known since 1942
— P.A.M. Dirac, Proc. R. Soc. London, Ser.A I80, I (1942)
—W. Pauli and F. Villars, Rev. Mod. Phys. I5, I75 (1943); 2I, 21 (1949)
—T.D. Lee, Phys. Rev. 95, I329 (1954)

Perturbative corrections to propagators introduce

 complex poles - ghosts (phantoms)
Baryon-meson Yukawa coupling

- 25 years back*

Spin-I/2 field Yukawa coupled to spin-0 and spin-I meson fields

$$
\begin{aligned}
\mathcal{L}= & \bar{\psi}\left(i \gamma_{\mu} \partial^{\mu}-i g_{0 \pi} \gamma_{5} \tau \cdot \pi-g_{0 \omega} \gamma_{\mu} \omega^{\mu}\right) \psi \\
& -\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu}+\frac{1}{2} \partial_{\mu} \pi \cdot \partial^{\mu} \pi-\frac{1}{2} m_{\pi}^{2} \pi \cdot \pi
\end{aligned}
$$

$$
F^{\mu \nu}=\partial^{\mu} \omega^{\nu}-\partial^{\nu} \omega^{\mu}
$$

Model is renormalizable because massive vector mesons couple to a conserved current (baryon current)

[^0]
Coupled system of DSE

I. Rainbow approximation for the fermion

- use bare meson propagators, bare baryon-meson vertices

Hadron physics scale

$$
\begin{gathered}
D_{\pi}\left(p^{2}\right)=\frac{1}{p^{2}-m_{\pi}^{2}+i \epsilon} \\
D_{\omega}^{\mu \nu}\left(p^{2}\right)=\left(-g^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{m_{\omega}^{2}}\right) \frac{1}{p^{2}-m_{\omega}^{2}+i \epsilon}
\end{gathered}
$$

$$
\begin{array}{ll}
\frac{g_{\pi}^{2}}{4 \pi}=14.4 & m_{\pi}=0.144 M \\
\frac{g_{\omega}^{2}}{4 \pi}=6.36 & m_{\omega}=0.833 M
\end{array}
$$

Change in notation:

$$
\bar{\rho}(\kappa) \rightarrow \bar{A}(\kappa)
$$

Spin-0 meson only

Change in notation:

$$
\bar{\rho}(\kappa) \rightarrow \bar{A}(\kappa)
$$

Spin-0 meson only

Change in notation:

$$
\bar{\rho}(\kappa) \rightarrow \bar{A}(\kappa)
$$

Perfect!

Spin-0 meson only

Change in notation:

$$
\bar{\rho}(\kappa) \rightarrow \bar{A}(\kappa)
$$

Perfect!

NOT QUITE

In addition to the pole and branch cut on the real axis

$$
z / M=0.73 \pm 1.25 i
$$

$\operatorname{Res}(z)=-0.75 \pm 0.32 i$

Spin-0 meson only

In addition to the pole and branch cut on the real axis

- a pair of complex-mass poles

$$
\begin{aligned}
z / M & =0.73 \pm 1.25 i \\
\operatorname{Res}(z) & =-0.75 \pm 0.32 i
\end{aligned}
$$

Change in notation:

$$
\bar{\rho}(\kappa) \rightarrow \bar{A}(\kappa)
$$

Spin-I meson only

Change in notation:

$$
\bar{\rho}(\kappa) \rightarrow \bar{A}(\kappa)
$$

Spin-I meson only

Change in notation:

$$
\bar{\rho}(\kappa) \rightarrow \bar{A}(\kappa)
$$

Spin-I meson only

Change in notation:

$$
\bar{\rho}(\kappa) \rightarrow \bar{A}(\kappa)
$$

Spectral function is negative

Spin-I meson only

Change in notation:

$$
\bar{\rho}(\kappa) \rightarrow \bar{A}(\kappa)
$$

Spectral function is negative

Positivity violation!

In addition to the pole and branch cut on the real axis

In addition to the pole and branch cut on the real axis

- again pair of complex-conjugated poles

In addition to the pole and branch cut on the real axis

- again pair of complex-conjugated poles

$$
z / M=5.7 \pm 11.8 i
$$

In addition to the pole and branch cut on the real axis

- again pair of complex-conjugated poles

$$
z / M=5.7 \pm 11.8 i
$$

$$
\operatorname{Res}(z)=-1.04 \pm 0.22 i
$$

Spin-I meson only

In addition to the pole and branch cut on the real axis

— again pair of complex-conjugated poles

$$
z / M=5.7 \pm 11.8 i
$$

$$
\operatorname{Res}(z)=-1.04 \pm 0.22 i
$$

Complex-mass poles
$z / M=1.05 \pm 1.26 i$
$\operatorname{Res}(z)=-0.77 \mp 0.20 i$

Including both mesons

Complex-mass poles
$z / M=1.05 \pm 1.26 i$
$\operatorname{Res}(z)=-0.77 \mp 0.20 i$

2. Coupled DSE baryon + meson - use bare vertices

NO positivity violation

Self-consistent		Not self-consistent		
B	$1.06 \pm 1.25 i$	$-0.77 \pm 0.20 i$	$1.05 \pm 1.26 i$	$-0.77 \pm 0.20 i$
MO	-1.04	-1.08	-1.44	-1.13
MI	-3.50	-1.30	-5.68	-1.49

FIG. 3. Self-consistent (solid curve) and not self-consistent (dashed curve) π spectral function $\rho_{\pi R}\left(\sigma^{2}\right) . \sigma^{2}$ is in units of M^{2} and $\rho_{\pi R}\left(\sigma^{2}\right)$ is in units of M^{-2}.

FIG. 4. Self-consistent (solid curve) and not self-consistent (dashed curve) ω spectral function $\rho_{\omega R}\left(\sigma^{2}\right)$. The units are the same as in Fig. 3.

Complex-mass poles in all propagators

Self-consistent		Not self-consistent		
B	$1.06 \pm 1.25 i$	$-0.77 \pm 0.20 i$	$1.05 \pm 1.26 i$	$-0.77 \pm 0.20 i$
MO	-1.04	-1.08	-1.44	-1.13
MI	-3.50	-1.30	-5.68	-1.49

FIG. 3. Self-consistent (solid curve) and not self-consistent (dashed curve) π spectral function $\rho_{\pi R}\left(\sigma^{2}\right) . \sigma^{2}$ is in units of M^{2} and $\rho_{\pi R}\left(\sigma^{2}\right)$ is in units of M^{-2}.

FIG. 4. Self-consistent (solid curve) and not self-consistent (dashed curve) ω spectral function $\rho_{\omega R}\left(\sigma^{2}\right)$. The units are the same as in Fig. 3.

Can one kill the complex-mass poles?

YES - use form factors that soften the ultraviolet

$$
\begin{aligned}
\sigma(\kappa) \underset{\kappa \rightarrow \infty}{\longrightarrow}|\kappa| & \rho(\kappa) \underset{\kappa \rightarrow \infty}{\longrightarrow} \frac{1}{|\kappa| \ln ^{2}|\kappa|} \\
F\left(p_{1}, p_{2}, q\right)= & \frac{1}{1+\left|p_{1}^{2} / \Lambda^{2}\right|} \frac{1}{1+\left|q^{2} / \Lambda^{2}\right|} \frac{1}{1+\left|p_{2}^{2} / \Lambda^{2}\right|}
\end{aligned}
$$

Conclusions

- Can get positivity violation with a model whose relation to QCD is very remote, to say the least
- Can get positivity violation and complex-mass poles in a one-loop calculation (can fit lattice data)
- Can get positivity violation and complex-mass poles in meson-baryon models

Suppose one finds positivity violation and/or
complex-mass poles in a QCD model/truncation

- how can one tell whether they are

$$
\begin{aligned}
& \text { real features of QCD or are } \\
& \text { due to approximation/truncation used? }
\end{aligned}
$$

Need detailed comparisons with lattice (when possible), gauge symmetry constraints, if physical are there observables related to complex poles (fragmentation)?

Funding

QCNPq
Científico e Tecnológico

[^0]: * C.A. da Rocha,G.K., L.Wilets, NPA 616, 625 (1997) M.E. Bracco, A. Eiras, G.K., L.Wilets, PRC 49, 1299 (1994) G.K., M. Nielsen, R.D. Puff, L.Wilets, PRC 47, 2485 (1993)

