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Spectral functions
&

the Functional Renormalization Group

Nicolas Wink

Non-Perturbative QFT in Euclidean and Minkowski

M. Bluhm, A. K. Cyrol,
J. Horak, Y. Jiang,
M. Nahrgang, J. M. Pawlowski,
F. Rennecke, A. K. Rothkopf, …

Work in collaboration with:
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Spectral functions in QCD

How to get non-perturbative correlation functions in Minkowski space-time

Direct calculation

Pawlowski, Strodthoff, NW, arxiv:1711.07444 

Reconstruction from Euclidean data

Motivation

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945

Applications
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Spectral functions
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Spectral representations

Spectral representation

What are spectral functions

Spectral function

Frequency

Physical picture :

Encodes the spectrum of the theory

Linear response functions

Axiomatic/Mathematical picture :

Existence linked to a restriction of the underlying functional space

Pragmatic picture :

Statement about the analytic structure of the propagator

Integral representation of the (Euclidean) propagator

c.f. talk of Peter Lowdon
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Higher order spectral representations
What about vertices?

Vertices admit a spectral representation!

Spectral representations

Evans, Phys.Lett. B249 (1990)
Evans, Nucl.Phys. B374 (1992) 
Bodeker, Sangel, JCAP 1706 (2017)
Pawlowski, NW, work in progress
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Higher order spectral representations
What about vertices?

Vertices admit a spectral representation!

Constrained by Consider

Analytically continue with

Three-point function

Identities:

and

Spectral representations

Evans, Phys.Lett. B249 (1990)
Evans, Nucl.Phys. B374 (1992) 
Bodeker, Sangel, JCAP 1706 (2017)
Pawlowski, NW, work in progress
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Degenerate for identical fields:

Spectral representation of three-point functions:

Spectral functions:
preliminary
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Higher order spectral representations
What about vertices?

Vertices admit a spectral representation!

Constrained by Consider

Analytically continue with

Three-point function

Identities:

and

Spectral representations

Evans, Phys.Lett. B249 (1990)
Evans, Nucl.Phys. B374 (1992) 
Bodeker, Sangel, JCAP 1706 (2017)
Pawlowski, NW, work in progress

Generalizes to n-point functions

Degenerate for identical fields:

Spectral representation of three-point functions:

Spectral functions:
preliminary
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Spectral representation

preliminary

preliminary

Spectral function Euclidean Dressing

Pawlowski, NW, work in progress

Application to scalar field
φ³-theory, 1-loop Perturbation theory from the FRG



Nicolas Wink (Heidelberg University) Coimbra, September 2019 19

Direct 
Calculation
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Implications of the analytic structure

Calculation

Applies to all functional methods (e.g. pert. theory, FRG, DSE, 2PI, …)
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Implications of the analytic structure

Calculation

Applies to all functional methods (e.g. pert. theory, FRG, DSE, 2PI, …)

Euclidean result is unique
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Implications of the analytic structure

Calculation

Applies to all functional methods (e.g. pert. theory, FRG, DSE, 2PI, …)

Euclidean result is unique

Analytic continuation to Minkowski spacetime is unique

Deformation of integration contours necessarily required

Analytic continuation problem at finite temperature resolved by demanding preservation of this structure
Baym, Mermin, Journal of Mathematical Physics 2, 232 (1961)

Evans, Nucl.Phys. B374 (1992)

Unique integration prescription can be obtained by a smooth deformation of the Euclidean path (keep all residues)

Map cuts to poles via their 
spectral representations

c.f. talk of Gernot Eichmann
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With spectral representation

Calculation

Vacuum polarization
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With spectral representation

Calculation

Vacuum polarization

Sufficient to consider frequency dependence:

Contains full information in vacuum due to Lorentz invariance

Independent, relevant variable at finite Temperature/chemical Potential
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With spectral representation

Calculation

Vacuum polarization

Sufficient to consider frequency dependence:
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With spectral representation

Calculation

Vacuum polarization

Sufficient to consider frequency dependence:

Contains full information in vacuum due to Lorentz invariance

Independent, relevant variable at finite Temperature/chemical Potential

Polarization diagram as example:

Insert spectral representation for all non-trivial propagators/vertices

Perturbative integral with arbitrary masses
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Calculation

Without spectral representation

Vacuum polarization
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Calculation

Without spectral representation

Integration contour

Analytic structure polarization diagram

Vacuum polarization
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Calculation

Without spectral representation

Integration contourIntegration contour

Analytic structure polarization diagram

c.f. talk of Gernot Eichmann

Vacuum polarization
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Calculation

Without spectral representation

Integration contourIntegration contour

Analytic structure polarization diagram
Generalizes to vertices

c.f. talk of Gernot Eichmann

Vacuum polarization
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Functional Renormalization Group

Calculation
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Functional Renormalization Group

Calculation
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Functional Renormalization Group

Calculation

• Non-perturbative first principle method

• Access to physical mechanisms

• No sign problem
• Chemical potential
• Real time
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Regulator derivative
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Functional Renormalization Group

Calculation

• Non-perturbative first principle method

• Access to physical mechanisms

• No sign problem
• Chemical potential
• Real time

No new (major) conceptual problems

Regulator derivative

Dressed regulated propagator All quantities fully dressed
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Yang-Mills theory

Calculation

Cyrol, Fister, Mitter, Pawlowski, Strodthoff, Phys.Rev. D94 (2016)
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Regulator

Calculation

Regulator introduces inconviences

Analytic structure of (full) regularized propagators altered
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Regulator

Calculation

No regulator known that preserves spectral structure & Lorentz invariance

Regulator introduces inconviences

Analytic structure of (full) regularized propagators altered

Two options

Shape function, e.g.
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Regulator

Calculation

Take additional poles explicit into account

Pawlowski, Strodthoff, NW, PRD98 (2018)

Foerchinger, JHEP 1205 (2012) 
see e.g.

Explicit breaking of Lorentz invariance

see e.g. Kamikado, Strodthoff, von Smekal, Wambach, Eur.Phys.J. C74, 2806 (2014) 
Tripolt, Strodthoff , von Smekal, Wambach, PRD89 (2014) 

No regulator known that preserves spectral structure & Lorentz invariance

Regulator introduces inconviences

Analytic structure of (full) regularized propagators altered

Two options

Shape function, e.g.
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Regulator

Calculation

Numerically tedious
(but constant effort)

Pawlowski, Strodthoff, NW, PRD98 (2018)

Take additional poles explicit into account

Pawlowski, Strodthoff, NW, PRD98 (2018)

Foerchinger, JHEP 1205 (2012) 
see e.g.
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Regulator

Calculation

Numerically tedious
(but constant effort)

Convient for very simple approximations
(then also tedious)

Tripolt, Strodthoff , von Smekal, Wambach, PRD89 (2014) Pawlowski, Strodthoff, NW, PRD98 (2018)

Take additional poles explicit into account

Pawlowski, Strodthoff, NW, PRD98 (2018)

Foerchinger, JHEP 1205 (2012) 
see e.g.

Explicit breaking of Lorentz invariance

see e.g. Kamikado, Strodthoff, von Smekal, Wambach, Eur.Phys.J. C74, 2806 (2014) 
Tripolt, Strodthoff , von Smekal, Wambach, PRD89 (2014) 
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Application 1
-

Low energy effective theory of QCD
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Transport

Transport approach to QCD
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Transport

Transport approach to QCD

Describe non-equilibrium QCD in the linear response regime around an equilibrium state
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Noise field

(Dissipation-Fluctuation)
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Transport

Transport approach to QCD

Describe non-equilibrium QCD in the linear response regime around an equilibrium state

Evolution of critical mode via a transport equation

Utilize 2+1 flavor low energy effective description of QCD

FRG for equilibrium calculations
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Noise field
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Bound states efficiently taken into 
account via Dynamical Hadronization

Flow equation for QCD
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Transport

Transport approach to QCD

Describe non-equilibrium QCD in the linear response regime around an equilibrium state

Evolution of critical mode via a transport equation

Utilize 2+1 flavor low energy effective description of QCD

FRG for equilibrium calculations

Quantum equation of motion
Noise field

(Dissipation-Fluctuation)

Bound states efficiently taken into 
account via Dynamical Hadronization

Flow equation for QCD
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Phase structure contains a critical endpoint
Low-energy effective theory of QCD

Schaefer, Rennecke, PRD96 (2017) 

Transport
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Phase structure contains a critical endpoint
Low-energy effective theory of QCD

Transport

Schaefer, Rennecke, PRD96 (2017) 
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Sigma meson spectral function  at T = 130 MeV 
and vanishing chemical potential

Pawlowski, Rennecke, NW, in prep.

Linear response function

preliminary

Transport
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Sigma meson spectral function  at T = 130 MeV 
and vanishing chemical potential

Pawlowski, Rennecke, NW, in prep.

Linear response function

preliminary

Transport



Nicolas Wink (Heidelberg University) Coimbra, September 2019 66

Transport equation

Evolution governed by transport equation:

Split into equilibrium and fluctuation part

with

Transport
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Transport equation

Evolution governed by transport equation:

White noise approximation:

Spatial isotropy approximation:

Initial conditions:

Split into equilibrium and fluctuation part

Quench from „high temperature“

with

Transport
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preliminary

Equilibration time
• Critical endpoint and phase 

boundary clearly identifiable

• Critical slowing down at the 
critical endpoint

• Impact on observables?

Reference time scale
𝜏0 ≈ 0.4 fm/c

Bluhm, Jiang, Nahrgang, Pawlowski, Rennecke, NW, in prep.

Luo, Xu, Nucl.Sci.Tech. 28 (2017)

Transport
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Application 2
-

Dyson-Schwinger equations
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DSE

Dyson-Schwinger equations

Scalar φ⁴-theory (in the broken phase)

Work with Jan Horak, Jan M. Pawlowski Horak, Pawlowski, NW, wip
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DSE

Dyson-Schwinger equations

Scalar φ⁴-theory (in the broken phase)

Truncation:
• Full two-point function
• Classical vertices

Work with Jan Horak, Jan M. Pawlowski Horak, Pawlowski, NW, wip
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DSE

Dyson-Schwinger equations

Scalar φ⁴-theory (in the broken phase)

Truncation:
• Full two-point function
• Classical vertices

Perturbative integral with arbitrary masses

Insert spectral represenations for all propagators

Work with Jan Horak, Jan M. Pawlowski Horak, Pawlowski, NW, wip
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DSE

Dyson-Schwinger equations

Scalar φ⁴-theory (in the broken phase)

Truncation:
• Full two-point function
• Classical vertices

Perturbative integral with arbitrary masses

Insert spectral represenations for all propagators

Work with Jan Horak, Jan M. Pawlowski

Dimensional regularization

Horak, Pawlowski, NW, wip
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Horak, Pawlowski, NW, wip

DSE

Dyson-Schwinger equations
Dimensional regularization

Frequency ω

Sp
ec

tr
al

 f
u

n
ct

io
n

 ρ

M
as

s 
p

o
le

2-particle threshold

3-particle threshold

Work with Jan Horak, Jan M. Pawlowski
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Reconstruction
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Spectral reconstruction

Propagator in the complex plane

Euclidean data

Spectral function (discontinuity)

Retarded propagatorAdvanced propagator

Reconstruction
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Reconstruction
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Spectral reconstruction

Propagator in the complex plane

Euclidean data

Spectral function (discontinuity)

Retarded propagatorAdvanced propagator

Invert:

more convenient

Consider finite temperature (includes vacuum as special case) 

Reconstruct analytic function from equally spaced points in one half-plane Matsubara modes

Reconstruction
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Spectral reconstruction

Propagator in the complex plane

Euclidean data

Spectral function (discontinuity)

Retarded propagatorAdvanced propagator

Invert:

more convenient

Consider finite temperature (includes vacuum as special case) 

Reconstruct analytic function from equally spaced points in one half-plane Matsubara modes

Uniqueness by Carlson’s theorem 

Mathematically:

Explicit construction of spectral function possible,
however the problem is ill-conditioned

Cuniberti, De Micheli, Viano, Commun.Math.Phys. 216 (2001)

Reconstruction
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Spectral reconstruction

Propagator in the complex plane

Euclidean data

Spectral function (discontinuity)

Retarded propagatorAdvanced propagator

Invert:

more convenient

Consider finite temperature (includes vacuum as special case) 

Reconstruct analytic function from equally spaced points in one half-plane Matsubara modes

Uniqueness by Carlson’s theorem 

Mathematically:

Explicit construction of spectral function possible,
however the problem is ill-conditioned

Cuniberti, De Micheli, Viano, Commun.Math.Phys. 216 (2001)

Usual reconstructions:

Linked functional basis and 
determination of coefficients

Idea: Physically inspired basis that resprects 
analytic structure of the propagator

Reconstruction
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Reconstruction

Spectral reconstruction

Guiding principles:

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945
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Reconstruction

Spectral reconstruction

Guiding principles:

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945

Chose a suitable functional basis Utilize structures with a physics picture

Start from generalized Breit-Wigners
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Reconstruction

Spectral reconstruction

Guiding principles:

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945

Chose a suitable functional basis Utilize structures with a physics picture

Start from generalized Breit-Wigners

Utilize all prior knowledge

Analytic relation for IR asymptotic

Include/Enforce known asymptotics
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Reconstruction

Spectral reconstruction

Guiding principles:

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945

Chose a suitable functional basis Utilize structures with a physics picture

Start from generalized Breit-Wigners

Utilize all prior knowledge

Analytic relation for IR asymptotic

Include/Enforce known asymptotics

Determine coefficients in a reliable way Different levels of quality

𝜒2-fit Bayesian Inference (Hamiltonian Monte-Carlo)
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Reconstruction

Spectral reconstruction

Connection to the analytic structure

Consider the analytically continued retarded 
propagator

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945
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Reconstruction

Spectral reconstruction

Connection to the analytic structure

Consider the analytically continued retarded 
propagator

The other half-plane is necessarily meromorphic

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945
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Reconstruction

Spectral reconstruction

Connection to the analytic structure

Consider the analytically continued retarded 
propagator

Ansatz for the complex structure of 
the retarded propagator

The other half-plane is necessarily meromorphic

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945
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Reconstruction

Spectral reconstruction

Connection to the analytic structure

Consider the analytically continued retarded 
propagator

Ansatz for the complex structure of 
the retarded propagator

The other half-plane is necessarily meromorphic

Previous knowledge easily included

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945
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Reconstruction

Reconstructing the gluon
Cyrol, Fister, Mitter, Pawlowski, Strodthoff, Phys.Rev. D94 (2016)

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945
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Reconstruction

Reconstructing the gluon
Cyrol, Fister, Mitter, Pawlowski, Strodthoff, Phys.Rev. D94 (2016)

Gluon admits positivity violation

Most reconstruction methods fail (miserably) 

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945
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Reconstruction

Reconstructing the gluon
Cyrol, Fister, Mitter, Pawlowski, Strodthoff, Phys.Rev. D94 (2016)

Gluon admits positivity violation

Most reconstruction methods fail (miserably) 

Ansatz includes

Generalized Breit-Wigners

Polynomials

IR & UV asymptotic cuts (negative IR!) 

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945
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Reconstruction

Reconstructing the gluon
Cyrol, Fister, Mitter, Pawlowski, Strodthoff, Phys.Rev. D94 (2016)

Gluon admits positivity violation

Most reconstruction methods fail (miserably) 

Ansatz includes

Generalized Breit-Wigners

Polynomials

IR & UV asymptotic cuts (negative IR!) 

Determine coefficients via 𝜒2-fit

First start for improvement, but HMC requires uniqueness of the coefficients

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945
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Reconstruction

Reconstructing the gluon
Cyrol, Fister, Mitter, Pawlowski, Strodthoff, Phys.Rev. D94 (2016)

Gluon admits positivity violation

Most reconstruction methods fail (miserably) 

Ansatz includes

Generalized Breit-Wigners

Polynomials

IR & UV asymptotic cuts (negative IR!) 

Determine coefficients via 𝜒2-fit

First start for improvement, but HMC requires uniqueness of the coefficients

Shape reliable, quantitative details are not

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945
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Reconstructing the gluon

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945

Reconstruction
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Reconstructing the gluon

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945

Reconstruction

In qualitative agreement with direct DSE 
calculation and other reconstructions

Strauss, Fischer, Kellermann, Phys.Rev.Lett. 109 (2012)

Dudal, Oliveira, Silva, Phys.Rev. D89 (2014)
see e.g.
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Reconstructing the gluon

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945

Reconstruction
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Application
-

Transport coefficients



Nicolas Wink (Heidelberg University) Coimbra, September 2019 102

Transport coefficients

Reconstruction

Shear viscosity:

Bulk viscosity:

Christiansen, Haas, Pawlowski, Strodthoff, PRL (2015)

Pawlowski, NW, work in progress
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Transport coefficients

Reconstruction

Shear viscosity:

Bulk viscosity:

+ three-loop terms

Composite Dyson-Schwinger equation 

Exact representation with a finite number of loops

Christiansen, Haas, Pawlowski, Strodthoff, PRL (2015)

Pawlowski, NW, work in progress
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Transport coefficients

Equilibrium

Pawlowski, NW , in prep.

Shear viscosity
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Transport coefficients

Equilibrium

Pawlowski, NW , in prep.

Bulk viscosity
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Summary

• Spectral representations and their implications

• Ways to obtain spectral functions:
• Spectral functions from direct computation
• Spectral functions from reconstruction

• Applications of spectral functions:
• Non-equilibrium transport
• Dimensional regularization + DSE
• Transport coefficients
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Summary

• Spectral representations and their implications

• Ways to obtain spectral functions:
• Spectral functions from direct computation
• Spectral functions from reconstruction

• Applications of spectral functions:
• Non-equilibrium transport
• Dimensional regularization + DSE
• Transport coefficients

Thank you for your attention!
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Comparison with other works

Strauss, Fischer, Kellermann, Phys.Rev.Lett. 109 (2012) Dudal, Oliveira, Silva, Phys.Rev. D89 (2014)
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Breit-Wigner benchmark

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945
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Comparison with other methods

Bayesian reconstruction 

Padé reconstruction

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.00945
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Application to the O(N)-Model
Imaginary part of the retarded two-point function

Pion
Results O(N)-model

Pawlowski, Strodthoff, NW, arxiv:1711.07444 
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Application to the O(N)-Model
Imaginary part of the retarded two-point function

Sigma meson
Results O(N)-model

Pawlowski, Strodthoff, NW, arxiv:1711.07444 
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Application to the O(N)-Model

Results O(N)-model

Pawlowski, Strodthoff, NW, arxiv:1711.07444 

In medium non-commuting limits

Sigma meson
T = 138 MeV
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Application to the O(N)-Model
Finite temperature spectral functions

Results O(N)-model

Pawlowski, Strodthoff, NW, arxiv:1711.07444 
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Application to the O(N)-Model

Results O(N)-model

Pawlowski, Strodthoff, NW, arxiv:1711.07444 

Finite temperature spectral functions
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Application to the O(N)-Model

Results O(N)-model

Pawlowski, Strodthoff, NW, arxiv:1711.07444 

Finite temperature spectral functions
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Application to the O(N)-Model

Results O(N)-model

Finite temperature spectral functions

Pawlowski, Strodthoff, NW, arxiv:1711.07444 
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Application to the O(N)-Model

Results O(N)-model

Pawlowski, Strodthoff, NW, arxiv:1711.07444 

Finite temperature spectral functions
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Application to the O(N)-Model Finite temperature spectral function for various external momenta

Pion meson
Results O(N)-model

Pawlowski, Strodthoff, NW, arxiv:1711.07444 
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Application to the O(N)-Model Finite temperature spectral function for various external momenta

Sigma meson
Results O(N)-model

Pawlowski, Strodthoff, NW, arxiv:1711.07444 
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Spectral representation

Spectral representation

Evans, Phys.Lett. B249 (1990)
Evans, Nucl.Phys. B374 (1992) 
Bodeker, Sangel, JCAP 1706 (2017)
Pawlowski, NW, work in progress

Propagator

Spectral representation: Spectral function:

Nicolas Wink (ITP Heidelberg) Cold Quantum Coffee (Heidelberg 2017)
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preliminary

Spectral representation

Spectral representation

Three-point function

Evans, Phys.Lett. B249 (1990)
Evans, Nucl.Phys. B374 (1992) 
Bodeker, Sangel, JCAP 1706 (2017)
Pawlowski, NW, work in progress

Spectral representation:

Spectral functions:

Degenerate for a identical fields

Propagator

Spectral representation: Spectral function:

Nicolas Wink (ITP Heidelberg) Cold Quantum Coffee (Heidelberg 2017)
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Analytic continuations

Spectral representation

Constrained by 
Consider

Analytically continue with

Evans, Nucl.Phys. B374 (1992)
Hou, Wang, Heinz, J.Phys. G24 (1998)
Pawlowski, NW, work in progress

Nicolas Wink (ITP Heidelberg) Cold Quantum Coffee (Heidelberg 2017)
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Analytic continuations

Spectral representation

Constrained by 
Consider

Analytically continue with

Two-point function

Retarded

Advanced

Identities:

and

Evans, Nucl.Phys. B374 (1992)
Hou, Wang, Heinz, J.Phys. G24 (1998)
Pawlowski, NW, work in progress

Nicolas Wink (ITP Heidelberg) Cold Quantum Coffee (Heidelberg 2017)
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Analytic continuations

Spectral representation

Constrained by 
Consider

Analytically continue with

Two-point function

Retarded

Advanced

Identities:

and

Three-point function

Identities:

and

Evans, Nucl.Phys. B374 (1992)
Hou, Wang, Heinz, J.Phys. G24 (1998)
Pawlowski, NW, work in progress

Nicolas Wink (ITP Heidelberg) Cold Quantum Coffee (Heidelberg 2017)

60



Nicolas Wink (Heidelberg University) Coimbra, September 2019 126

Analytic continuations

Spectral representation

Constrained by 
Consider

Analytically continue with

Two-point function

Retarded

Advanced

Identities:

and

Three-point function

Identities:

and

There are                 n-point functions

of which                   are independent

Number of different analytic continuations unknown for general n
Evans, Nucl.Phys. B374 (1992)
Hou, Wang, Heinz, J.Phys. G24 (1998)
Pawlowski, NW, work in progress

Nicolas Wink (ITP Heidelberg) Cold Quantum Coffee (Heidelberg 2017)

60



Nicolas Wink (Heidelberg University) Coimbra, September 2019 127

Analytic continuations

Spectral representation

Constrained by Consider

Analytically continue with
Four-point function

More analytic continuations (32) than retarded/advanced basis functions (16)

Signs of individual ε’s does not fix signs of all possible sums

Evans, Nucl.Phys. B374 (1992) 

Hou, Wang, Heinz, J.Phys. G24 (1998)

Aurenche, Becherrawy, Nucl.Phys. B379 (1992) 

Pawlowski, NW, work in progress

Nicolas Wink (ITP Heidelberg) Cold Quantum Coffee (Heidelberg 2017)
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Analytic continuations

Spectral representation

Constrained by Consider

Analytically continue with
Four-point function

More analytic continuations (32) than retarded/advanced basis functions (16)

Signs of individual ε’s does not fix signs of all possible sums

The 8 simple retarded/advanced functions

The other 6 retarded/advanced functions

Obtained from a single analytic continuation

Superposition of four analytic continuations

Four possibilities for the signs of

is the direct linear superposition
Evans, Nucl.Phys. B374 (1992) 

Hou, Wang, Heinz, J.Phys. G24 (1998)

Aurenche, Becherrawy, Nucl.Phys. B379 (1992) 

Pawlowski, NW, work in progress

Nicolas Wink (ITP Heidelberg) Cold Quantum Coffee (Heidelberg 2017)
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Application to scalar field

Spectral representation

preliminary

1st iteration for a scalar field

Euclidean three point function

Nicolas Wink (ITP Heidelberg) Cold Quantum Coffee (Heidelberg 2017)
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Pawlowski, NW, work in progress
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Application to scalar field

Spectral representation

preliminary

1st iteration for a scalar field

Real part of analytic continued three-point function

Nicolas Wink (ITP Heidelberg) Cold Quantum Coffee (Heidelberg 2017)
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Pawlowski, NW, work in progress
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Application to scalar field

Spectral representation

preliminary

1st iteration for a scalar field

Imaginary part of analytic continued three-point function

Nicolas Wink (ITP Heidelberg) Cold Quantum Coffee (Heidelberg 2017)
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Pawlowski, NW, work in progress
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Application to scalar field

Spectral representation

preliminary

1st iteration for a scalar field

Three-point 
spectral density

Nicolas Wink (ITP Heidelberg) Cold Quantum Coffee (Heidelberg 2017)
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Pawlowski, NW, work in progress
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Application to scalar field

Spectral representation

1st iteration for a scalar field

preliminary
preliminary

Spectral function

Euclidean DressingReconstruction two-point function

Nicolas Wink (ITP Heidelberg) Cold Quantum Coffee (Heidelberg 2017)
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Application to scalar field

Spectral representation

1st iteration for a scalar field

preliminary

preliminary

Spectral function

Euclidean DressingReconstruction three-point function

Nicolas Wink (ITP Heidelberg) Cold Quantum Coffee (Heidelberg 2017)
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Pawlowski, NW, work in progress


