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Color Confinement

Millennium Prize Problems by the Clay Mathematics Institute

(US$1,000,000): Yang-Mills Existence and Mass Gap: Prove that, for

any compact simple gauge group G, a non-trivial quantum Yang-Mills

theory exists on R
4 and has a mass gap ∆ > 0.

Lattice simulations can solve QCD exactly (in discretized space-time),

allowing quantitative predictions for the physics of hadrons. But they

can also help reveal the principles behind a central phenomenon of

QCD: color confinement. In fact, we can try to understand the QCD

vacuum (the “battle for nonperturbative QCD”∗) by using inputs from

lattice simulations and numerically testing approximations introduced

in analytic approaches (Dyson-Schwinger equations, Bethe-Salpeter

equations, Pomeron dynamics, QCD-inspired models, etc).

∗The QCD vacuum, hadrons and the superdense matter, Edward V. Shuryak
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Possible Pathways to Confinement

Green’s functions carry all information of a QFT’s physical

and mathematical structure.

Gluon propagator (two-point function) as the most basic

quantity of QCD.

Confinement given by behavior at large distances (small

momenta) ⇒ nonperturbative study of IR gluon propagator.

Proposal by Mandelstam (1979) linking linear potential to

infrared behavior of gluon propagator as 1/p4.

Gribov-Zwanziger confinement scenario based on

suppressed gluon propagator and enhanced ghost

propagator in the infrared.
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Gauge-Related Lattice Features

Gauge action written in terms of oriented plaquettes

formed by the link variables Ux,µ, which are group

elements.

Under gauge transformations Ux,µ → g(x)Ux,µ g
†(x+ µ),

where g ∈ SU(Nc) ⇒ closed loops are gauge-invariant.

Integration volume is finite: no need for gauge-fixing.

When gauge fixing, procedure is incorporated in the

simulation, no need to consider Faddeev-Popov matrix.

Get FP matrix without considering ghost fields explicitly.

Lattice momenta given by p̂µ = 2 sin (π nµ/N) with

nµ = 0, 1, . . . , N/2 ⇔ pmin ∼ 2π/(aN) = 2π/L,

pmax = 4/a in physical units.
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Lattice Landau Gauge

In the continuum: ∂µ Aµ(x) = 0. On the lattice the (minimal) Landau

gauge is imposed by minimizing the functional

S[U ; g] = −

∑

x,µ

Tr Ug
µ(x) ,

where g(x) ∈ SU(N) and Ug
µ(x) = g(x) Uµ(x) g

†(x + aeµ) is the

lattice gauge transformation. By considering the relations Uµ(x) =

eiag0Aµ(x) and g(x) = eiτθ(x) , we can expand S[U ; g] (for small τ ):

S[U ; g] = S[U ; 1⊥] + τ S
′

[U ; 1⊥](b, x) θb(x)

+
τ2

2
θb(x)S

′′

[U ; 1⊥](b, x; c, y) θc(y) + . . .

where S
′′

[U ; 1⊥](b, x; c, y) = M(b, x; c, y)[A] is a lattice discretiza-

tion of the Faddeev-Popov operator −D · ∂ with Aµ(x) =
[

Uµ(x)− U †
µ(x)

]

traceless
/(2i).
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Constraining the Functional Integral

At a stationary point S
′

[U ; 1⊥](b, x) = 0 , one obtains

∑

µ

Ab
µ(x) − Ab

µ(x− a eµ) = 0 ,

which is a discretized version of the (continuum) Landau gauge condition. At a local

minimum one also has M(b, x; c, y)[A] ≥ 0 . This defines the first Gribov region (V.N.

Gribov, 1978)

Ω ≡ {U : ∂ ·A = 0, M ≥ 0 } ≡ all local minima of S[U ;ω] .

All gauge orbits intersect Ω (G.

Dell’Antonio & D. Zwanziger, 1991)

but the gauge fixing is not unique (Gri-

bov copies).

Absolute minima of S[U ;ω] define the

fundamental modular region Λ, free of

Gribov copies in its interior. (Finding

the absolute minimum is a spin-glass

problem.)

Ω
Λ

Γ
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Numerical Simulations

When we are interested in gauge-dependent quantities we con-

sider the following steps:

1. Choose an initial configuration C0 = Uµ(x) ∈ SU(Nc)

2. Thermalize the initial configuration (heat-bath, etc.) C0 → C1

3. Fix the gauge for the configuration Ci with i = 1, 2, . . .

4. Evaluate (gauge-dependent) quantities using the configura-

tion Ci

5. Produce a new (independent) configuration Ci → Ci+1

6. Go back to step 3

We do not need to simulate anti-commuting variables or to evalu-

ate the determinant of the Faddeev-Popov matrix!
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Gluon and Ghost Propagators

As a consequence of the restriction of the measure to the region Ω:

In minimal Landau gauge the gluon propagator

Dab
µν(p) =

∑

x

e−2iπk·x〈Aa
µ(x)A

b
ν(0)〉 = δab

(

gµν − pµ pν

p2

)

D(p2)

is suppressed in the IR limit, i.e. D(0) is finite (and nonzero) and reflection

positivity is violated. This result may be viewed as an indication of gluon

confinement (the propagator presents poles with complex-conjugate masses).

Infinite volume favors configurations on the first Gribov horizon, where λmin

of M goes to zero. In turn, the ghost propagator

G(p) =
1

N2
c − 1

∑

x, y, a

e−2πi k·(x−y)

V
〈M−1(a, x; a, y) 〉 ,

is IR enhanced at intermediate momenta, but it is free-like in the IR limit.
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Fits of the Propagators (I)

In Phys. Rev. D85 (A.C. et al., 2012) we have shown that the 4d SU(2) gluon prop-

agator D(p2) can be well fitted using the function (Gribov-Stingl propagator, RGZ

propagator)

f1(p
2) = C

p2 + s

p4 + u2 p2 + t2
,

implying complex-conjugate poles

f2(p
2) =

α+

p2 + ω2
+

+
α−

p2 + ω2
−

,

with α± = a± ib and ω2
±

= v ± iw. Similar results in Annals Phys. 397 (D.Dudal et

al., 2018) for 4d SU(3).

In Phys. Rev. D93 (A.C. et al., 2016) we have shown that the 4d SU(2) ghost propa-

gator G(p2) can be well fitted using the function

F3(p
2) =

z

p2
t+ p2/s2 + log

(

1 + p2/s2
)

1 + p2/s2
,

which has 1/p2 leading IR and UV behaviors.
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Fits of the Propagators (II)

For the ghost propagator G(p2) we have also considered the 1-loop expression, eval-

uated in Phys. Rev. D85 (A.C. et al., 2012) using the f2(p2) fit of the gluon propagator

D(p2), i.e.

G(p2) =
1

p2
1

1− σ(p2)

with

σ(p2) =
g2Nc

32π2R2

[

−p2t1(p
2) + R2t2(p

2) + p−2t3(p
2) − p−4t4(p

2)
]

.

Here, R =
√
v2 + w2 and t1(p2), t2(p2), t3(p2) and t4(p2) are written in terms of p2

and the pole parameters a, b, v, w (and an arbitrary momentum scale µ).

In this case the only fitting parameter is g2.

Note that, in the limit p → 0 one finds σ(p2)/g2 → c1 +
[

−c2 + c3 log(p2/R)
]

p2,

with c1, c2, c3 > 0. Thus, for a critical value g2c one can obtain σ(0) = 1, yielding a

ghost propagator with a 1/p4 singularity in the IR limit (JHEP 0806, Ph.Boucaud et

al., 2008).

NP QFT Workshop (Coimbra) September 11, 2019



Previous Simulations

In Phys. Rev. D85 and Phys. Rev. D93 (A.C. et al., 2012

and 2016) we considered simulations with lattice sides N =

48, 56, 64, 80, 96 and 128 at β = 2.2. In this case the lat-

tice spacing is approximately 0.210 fermi, so that the smallest

nonzero momentum is about 46 MeV and the largest physical

lattice volume V = N4 is about (27 fermi)4.

We want to check if the results obtained are confirmed when

considering smaller lattice spacings (continuum limit).

Let us recall that in Phys. Rev. D90 (A.C. et al., 2012), when

studying the so-called Bose-ghost propagator (related to the

issue of BRST symmetry breaking in minimal Landau gauge)

we have found a change in the pole structure when the lattice

spacing is decreased.
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New Simulations

V = N4 β L (fermi) pmin (MeV) # conf µ (GeV)

484 2.2 10.097 122.71 500 3.0

724 2.3494 10.097 122.76 250 5.0

964 2.4367 10.097 122.77 100 7.0

1204 2.5053 10.097 122.78 100 9.0

804 2.2 16.828 73.66 600 3.5

1284 2.3688 16.832 73.65 496 5.5

1604 2.4366 16.833 73.65 400 7.0

1924 2.4927 16.827 73.68 292/295 8.5

Eight sets of parameters (N, β) for two constant physical lat-

tice sizes L = Na = 10.097 and 16.83 (runs done with the

Blue Gene/P and Blue Gene/Q supercomputers at Rice

University). I will show a preliminary analysis for these data.
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Breaking of Rotational Invariance (I)
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Breaking of Rotational Invariance (II)

gluon propagator ghost propagator

N4 r4 r6 < χ2 > r4 r6 < χ2 >

484 0.054 0.000 2.62 0.016 — 1.30

724 0.084 -0.006 2.46 0.017 — 2.41

964 0.107 -0.015 2.35 0.014 — 0.48

1204 0.073 -0.005 2.39 0.016 — 3.02

804 0.091 -0.006 2.70 0.021 — 1.70

1284 0.059 -0.002 1.96 0.016 — 2.85

1604 0.070 -0.006 2.67 0.019 — 2.95

1924 0.073 -0.006 2.01 0.008 — 2.29

For each lattice volume V = N4 we show the parameters r4 and r6 used to define

improved momenta p2 =
∑

µ p̂2µ + r4 p̂4µ + r6 p̂6µ with p̂µ = 2 sin (π nµ/N), for the

gluon and ghost propagators.
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Breaking of Rotational Invariance (III)
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Breaking of Rotational Invariance (IV)
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Fits for the Gluon Propagator (I)

N4 C u(GeV) t(GeV2) s(GeV2) χ2/d.o.f.

484 0.853 (0.007) 0.671 (0.027) 0.674 (0.012) 2.388 (0.109) 2.08

724 0.883 (0.005) 0.680 (0.028) 0.616 (0.009) 2.844 (0.110) 1.73

964 0.902 (0.006) 0.826 (0.038) 0.673 (0.012) 3.945 (0.178) 1.47

1204 1.014 (0.004) 0.766 (0.034) 0.646 (0.010) 3.749 (0.140) 1.30

804 0.856 (0.004) 0.709 (0.017) 0.707 (0.008) 2.485 (0.073) 1.70

1284 0.894 (0.003) 0.712 (0.017) 0.658 (0.005) 3.224 (0.070) 2.08

1604 0.917 (0.002) 0.757 (0.015) 0.676 (0.005) 3.693 (0.064) 1.48

1924 0.953 (0.002) 0.785 (0.015) 0.641 (0.004) 3.758 (0.064) 1.28

Fits of the gluon-propagator data, for different lattice volumes V = N4 and β cou-

plings, using the fitting function f1(p2) and improved momenta. The whole range of

momenta was considered for the fits. Errors shown in parentheses correspond to

one standard deviation. Note: the renormalization condition D(µ2) = 1/µ2 affects

only the coefficient C.
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Fits for the Gluon Propagator (II)
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Poles and Gluon Mass

N4 v(GeV2) w(GeV2) mg(GeV) Γg(GeV)

484 0.225 (0.018) 0.636 (0.014) 0.475 (0.019) 1.341 (0.061)

724 0.231 (0.019) 0.571 (0.012) 0.481 (0.020) 1.188 (0.055)

964 0.341 (0.031) 0.581 (0.023) 0.584 (0.027) 0.995 (0.060)

1204 0.293 (0.026) 0.576 (0.017) 0.541 (0.024) 1.064 (0.056)

804 0.252 (0.012) 0.660 (0.010) 0.502 (0.012) 1.316 (0.038)

1284 0.254 (0.012) 0.607 (0.008) 0.504 (0.012) 1.206 (0.032)

1604 0.287 (0.011) 0.613 (0.007) 0.536 (0.010) 1.144 (0.026)

1924 0.308 (0.012) 0.562 (0.008) 0.555 (0.010) 1.013 (0.024)

Estimates of the parameters of the function f2(p2) from fits (see previous table) to

the equivalent form f1(p2). All poles are complex-conjugate pairs. We also show

the gluon mass mg =
√
v and its width Γg = w/mg , both in GeV. Errors shown

in parentheses correspond to one standard deviation. Note: the renormalization

condition D(µ2) = 1/µ2 affects only the coefficients a and b.
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F3(p
2) Fits for the Ghost Propagator (I)

N4 z t s(GeV) χ2/d.o.f.

484 0.900 (0.003) 3.310 (0.012) 0.372 (0.003) 0.95

724 0.969 (0.001) 3.028 (0.007) 0.383 (0.003) 0.68

964 0.995 (0.001) 2.869 (0.005) 0.359 (0.002) 0.33

1204 0.988 (0.0008) 2.907 (0.008) 0.382 (0.003) 0.62

804 0.921 (0.002) 3.321 (0.009) 0.389 (0.003) 2.17

1284 0.975 (0.0008) 2.987 (0.003) 0.379 (0.002) 1.51

1604 0.983 (0.0005) 2.847 (0.002) 0.377 (0.001) 1.12

1924 0.999 (0.0009) 2.974 (0.005) 0.414 (0.003) 4.31

Fits of the ghost-propagator data, for different lattice volumes V = N4 and β cou-

plings, using the fitting function F3(p2) and improved momenta. The whole range

of momenta was considered for the fits. Errors shown in parentheses correspond to

one standard deviation. Note: the renormalization condition G(µ2) = 1/µ2 affects

only the coefficient z.
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F3(p
2) Fits for the Ghost Propagator (II)
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1-Loop Fits for the Ghost Propagator (I)

N4 g2 χ2/d.o.f. g2c

484 11.59 (0.04) 24.0 16.14

724 8.22 (0.03) 15.6 11.84

964 6.22 (0.03) 15.2 9.33

1204 5.53 (0.06) 39.6 8.74

804 11.27 (0.02) 44.6 15.52

1284 7.76 (0.02) 73.1 11.22

1604 6.72 (0.03) 117.7 10.07

1924 6.05 (0.02) 68.4 8.79

Fits of the ghost-propagator data, for different lattice volumes V = N4 and β cou-

plings, using the 1-loop expression, with g2 as the only free parameter, and improved

momenta. The whole range of momenta was considered for the fits. Errors shown in

parentheses correspond to one standard deviation. We also show the critical value

g2c , which sets σ(0) = 1. Note: the renormalization condition D(µ2) = 1/µ2 affects

(multiplicatively) both g2 and g2c .
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1-Loop Fits for the Ghost Propagator (II)
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Conclusions

The features observed for gluon and ghost propagators, in minimal

Landau gauge, using relatively coarse lattices are confirmed in the

continuum limit:

the gluon propagator is finite (and nonzero) at zero

momentum, and it is characterized by complex-conjugate

poles;

if we interpret these poles as describing an unstable particle,

its mass and decay width seem to have a nice continuum limit;

the fit proposed for the ghost propagator works very well, also

for smaller lattice spacings;

the value for g2c does not get closer to the fitted value g2 in the

continuum limit.
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THANKS!
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