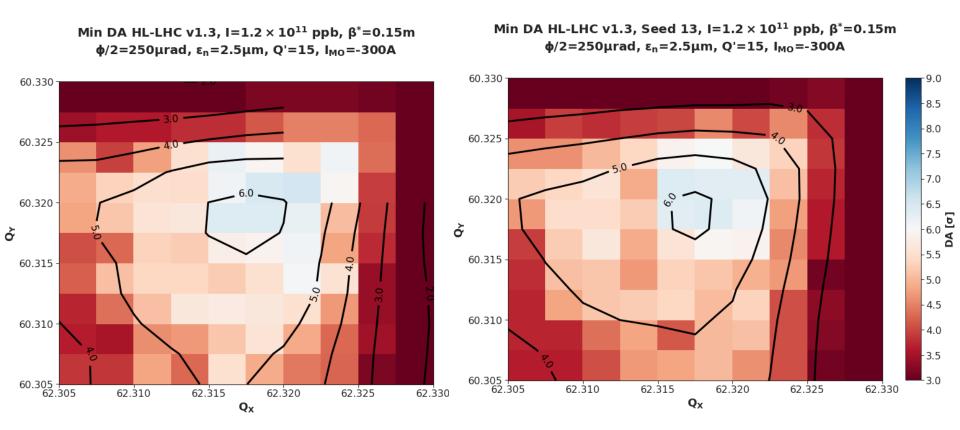
Effective of Systematic b₆ errors on beam-beam

N. Karastathis, Y. Papaphilippou, F.v.d. Veken

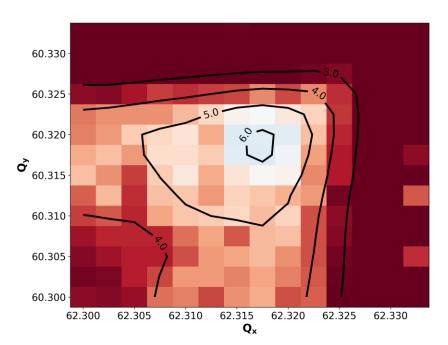
Hilumi-LHC WP2 Meeting 11.12.2018

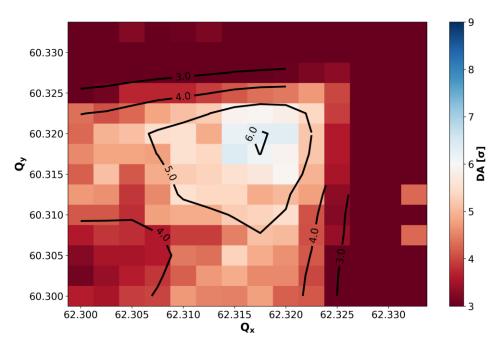

Introduction

- We evaluate the impact of **b**₆ in the presence of **BB** under the present operational scenario.
- The study is based around Frederik's results:
 - b6=-4 & statistical analysis shows the worst performing seed to be Seed
 13.
- 1. Selecting Seed 13 we evaluate DA in the worst case scenario for BB:
 - End of levelling: BBLR dominated, small area of DA available according to the operational scenario.
- 2. Repeat the scan using $b_6=-4$
- 3. Test the impact on the result if all the available be correctors fail.
- 4. Select the optimal WP at β *=15cm and scan the 60 seeds.
- 5. Repeat step 4 at the HO dominated regime: the **start of levelling**.
- N.B.: All simulations performed with 10⁶ turns over 5 amplitude ranges and 5 angles in the 1st quadrant of the configuration space, using the HL-LHC v1.3 optics under the optimized operational scenario (cern-acc-note-2018-0002).

Seed 1 vs Seed 13

Comparison of our "no errors" results with the "no errors with seed 13".

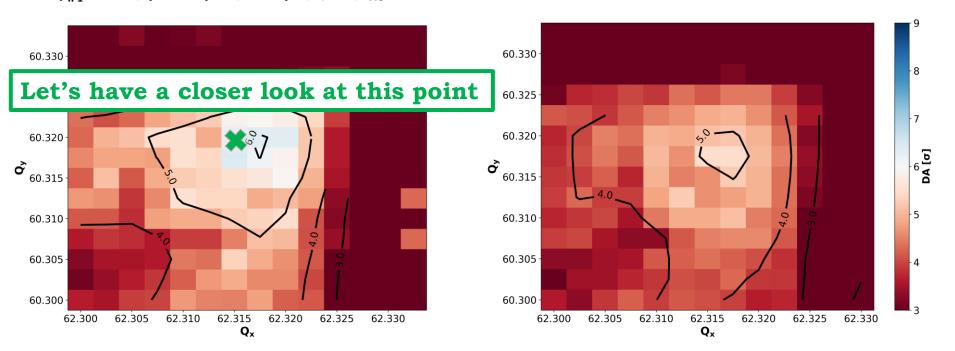

· Not significant change in the nominal scenario.


Impact of b_6 =-4 on Seed 13

• For the same seed compare the nominal b6 setting and the b6=-4 (worst case)

Min DA HL-LHC v1.3, Seed 13, Nominal b_6 , $I=1.2\times10^{11}$ ppl $\beta_{IP1}^*=0.15m$, $\phi/2=250\mu rad$, $\epsilon=2.5\mu m$, Q'=15, $I_{MO}=-300A$

Min DA HL-LHC v1.3, Seed 13, $b_6 = -4$, $I = 1.2 \times 10^{11}$ ppb $\beta_{IP1}^* = 0.15 \text{m}$, $\phi/2 = 250 \mu \text{rad}$, $\epsilon = 2.5 \mu \text{m}$, Q = 15, $I_{MO} = -300 \text{A}$

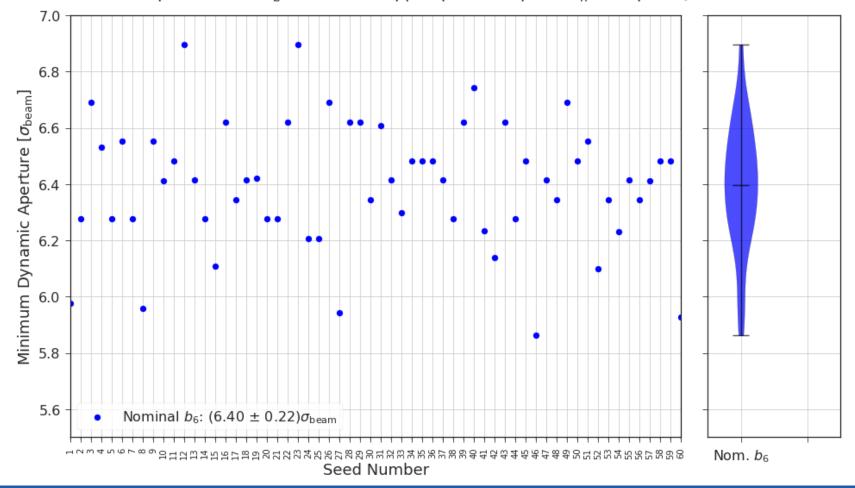

The overall impact is small.

Failure of all correctors

• In this case we compare the case for the seed 13 under a **b6=-4** in case of all correctors working properly versus if **all correctors fail**.

Min DA HL-LHC v1.3, Seed 13, $b_6 = -4$, $I = 1.2 \times 10^{11}$ ppb $\beta_{IP1}^* = 0.15$ m, $\phi/2 = 250$ µrad, $\epsilon = 2.5$ µm, Q' = 15, $I_{MO} = -300$ A

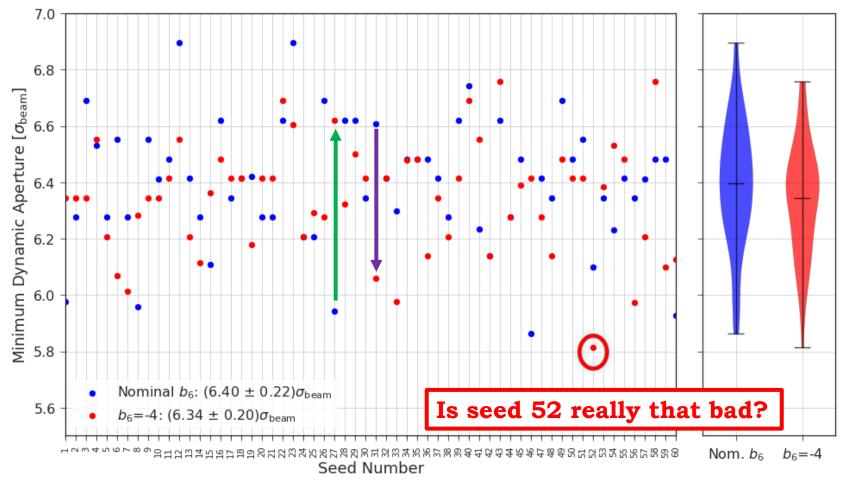
Min DA HL-LHC v1.3, Seed 13, $b_6 = -4$ & All IT Correctors Failed $I = 1.2 \times 10^{11}$ ppb, $\beta_{IP1}^* = 0.15$ m, $\phi/2 = 250$ µrad, $\epsilon = 2.5$ µm, Q' = 15, $I_{MO} = -300$ A


• A reduction of about 1σ of DA if all MCTX3 correctors fail in IT of IR1/5.

Impact of b_6 =-4 on all Seeds

• For fixed the WP (62.315, 60.320) compare **across all 60 seeds** the **min DA** for the nominal and the -4 case of b₆

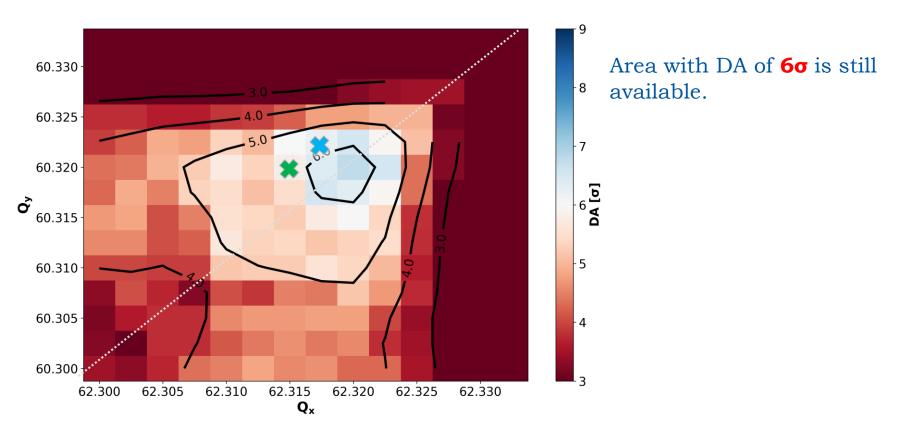
Minimum DA Distribution of $(Q_X,Q_Y)=(62.315, 60.320)$ for 60 seeds $\beta^*=15$ cm, $N_b=1.2\times 10^{11}$ ppb, $\phi/2=250\mu$ rad, $\epsilon_n=2.5\mu$ m, Q'=15



Impact of b_6 =-4 on all Seeds

Max gain: Seed 27 by $+0.68\sigma$

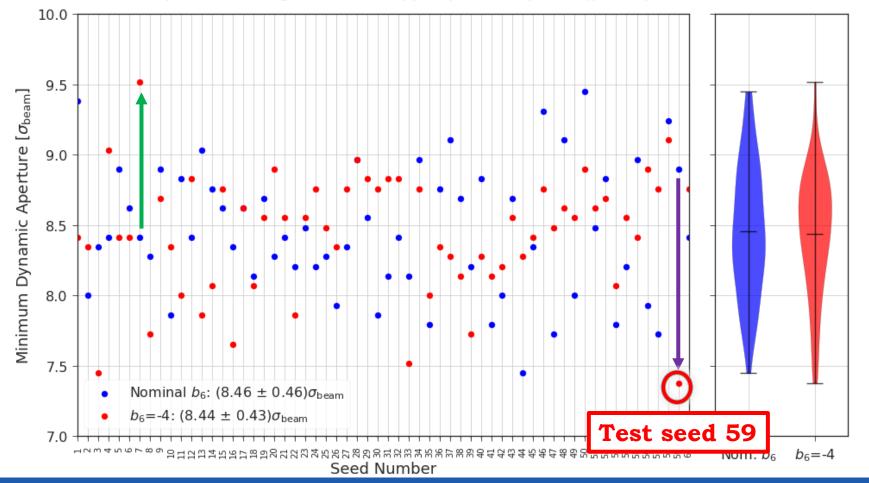
Max drop: Seed 31 by -0.55σ


Minimum DA Distribution of $(Q_X,Q_Y)=(62.315,\ 60.320)$ for 60 seeds $\beta^*=15$ cm, $N_b=1.2\times 10^{11}$ ppb, $\phi/2=250\mu rad,\ \epsilon_n=2.5\mu m,\ Q'=15$

Impact of b_6 =-4 on Seed 52

Min DA HL-LHC v1.3, Seed 52, $b_6 = -4$, $I = 1.2 \times 10^{11}$ ppb $\beta_{IP1}^* = 0.15$ m, $\phi/2 = 250$ µrad, $\epsilon = 2.5$ µm, Q' = 15, $I_{MO} = -300$ A

The optimal WP has slightly shifted "upwards" along the diagonal (increased tune shift).

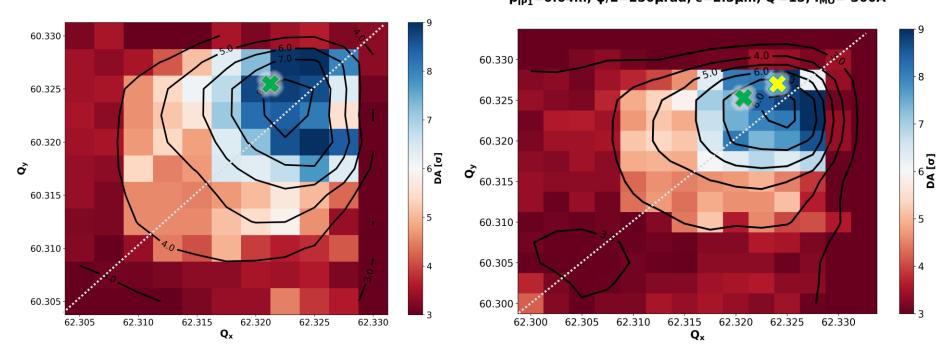

Impact of b6=-4 on all Seeds @ Start of Leveling

All points well above 7.0σ DA \rightarrow Larger spread between seeds.

Max gain: Seed 7 by $+1.10\sigma$

Max drop: Seed 59 by -1.52σ

Minimum DA Distribution of $(Q_X,Q_Y)=(62.320, 60.325)$ for 60 seeds $\beta^*=64$ cm, $N_b=2.2\times 10^{11}$ ppb, $\phi/2=250\mu rad$, $\epsilon_n=2.5\mu m$, Q'=15


Impact of $b_6=-4$ on Seed 59

Nominal

b₆=-9 | Seed 59

Min DA HL-LHC v1.3, $I = 2.2 \times 10^{11}$ ppb, $\beta_{IP1}^* = 0.60$ m $\phi/2 = 250 \mu rad$, $\epsilon = 2.5 \mu m$, Q=15, $I_{MO}=-300$ A

Min DA HL-LHC v1.3, Seed 59, $b_6 = -4$, $I = 2.2 \times 10^{11}$ ppb $\beta_{IP1}^* = 0.64$ m, $\phi/2 = 250$ μ rad, $\epsilon = 2.5$ μ m, Q' = 15, $I_{MO} = -300$ A

Still a large area of DA>7.0 \rightarrow Again, optimal WP slightly "shifted".

Summary

- · As expected, the impact of be is in the shadow of the beam-beam.
- Taking the **worst case for the scenario** without beam-beam (Frederik's result) and "switching-on" the beam-beam interactions observe that the **DA** > 6.0σ area is still available with small impact on the global result.
- Collapsing all the b6 correctors affects the result by a reduction at the 1σ level in minimum DA.
- Taking some statistics over all **60 seeds** for the optimal WP, we observe for the impact of b6:
 - when we are LR dominated (β *=15cm):
 - Maximum Increase or reduction of minimum DA by ~0.6σ
 - On average (over the min DA) the impact of the reduced b6 is less than 0.1σ
 - The **spread** among the seeds is at the level of 0.2σ
 - when we are HO dominated (β *=64cm):
 - Maximum increase or reduction of minimum DA by $\sim 1.3\sigma$ (at a spot well $> 7\sigma$)
 - On average (over the min DA) the impact of the reduced b6 is less than 0.1σ
 - The **spread** among the seeds is at the level of 0.45σ
- Overall, the combination of the increased b6 together with the BB induces an **additional tune-shift**, which can be mitigated by **properly adjusting the WP** → **no significant DA reduction**, when the IT correctors are working properly.

