

Amendment to HL-LHC circuits specifications

D. Gamba, S. Kostoglou, J. Coello De Portugal, R. De Maria, M. Giovannozzi, R. Tomas Garcia, M. Cerqueira Bastos, M. Martino

137th HiLumi WP2 Meeting – 11/12/2018

Requests and References

- Requests from WP6b:
 - Verify new PC specifications.
 - Can the HL-LHC 120A PCs be classified as class 4 (instead of 3), as the LHC ones?
 - Can the HL-LHC RQSX circuits be powered by a 600A PC?
 - instead of 200A -> i.e. 3 times more "noisy"
 - Can the HL-LHC **RTB8** circuit be powered by a **600A** PC?
 - instead of 300A -> i.e. 2 times more "noisy"
 - Do we need to create a **new class "1-2"** for HL-LHC 2kA?
 - Can we replace "remote" by "on request" PC calibrations?
- Additional **questions** within WP2:
 - What is the maximum separation collapse speed we can achieve?
- References:
 - WP2 original document <u>CERN-ACC-2017-0101</u>
 - New specifications by EPC: EDMS <u>#2048827</u>
 - Amendment on Overleaf (read-only) link

New specifications (w.r.t. old ones)

	N	ew clas	s		
ass: 0^a	1 ^{<i>a</i>}	1-2	2	3	4
0.5	0.5	0.5	1	1	1
2	2	2	5 (3)	10 (7)	20 (10)
2	2	2	5	$\frac{10}{8}$	10 (9)
m] <u>1</u>	2	7	5 (15.5)	5 (34)	20 (40)
0.2	0.4	0.3	+(1.2)	2	5
3	5	4	10 (7)	15	25 (19)
0.5(0.7)	1 (1.6)	7	2 (14.5)	5 (32)	10 (38)
pm] 10 (9.5)	10 (9.5)	11.5	20 (26.5)	50 (56)	100 (64)
r	$ \begin{array}{c} 0.5 \\ 2 \\ 2 \\ 1 \\ 0.2 \\ 3 \\ 0.5 (0.7) \end{array} $	ass: 0^a 1^a 0.5 0.5 2 2 2 2 1 2 0.2 0.4 3 5 0.5 0.7) 1.6	ass: 0^a 1^a 1-2 0.5 0.5 0.5 2 2 2 2 2 2 1 2 7 0.2 0.4 0.3 3 5 4 0.5 0.7) 1 1.6)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ass: 0^a 1^a 1-2230.50.50.511222 $5(3)$ $10(7)$ 222 $5(3)$ $10(7)$ 222 $5(15.5)$ $5(34)$ 127 $5(15.5)$ $5(34)$ 0.20.40.3 $1(1.2)$ 2354 $10(7)$ 15 $0.5(0.7)$ $1(1.6)$ 7 $2(14.5)$ $5(32)$

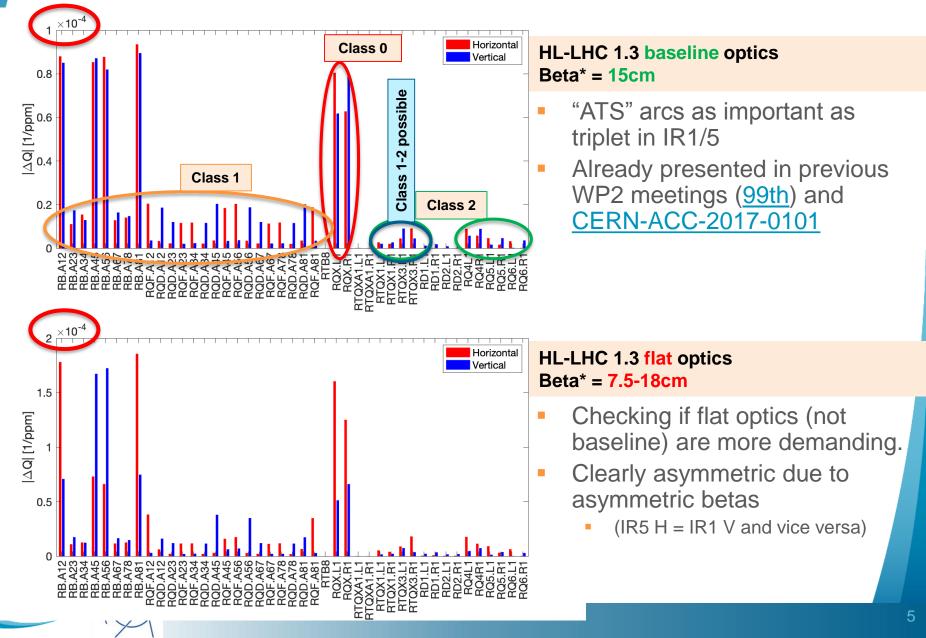
- Take into account better estimate of ambient temperature variation at the location where PC are typically installed
- All values (but "Noise") are for *f* < 0.1 Hz.</p>
 - At higher frequency the PC works in voltage-regulation.
 - Assumption: the effective (e.g. dumped by inductance etc.) B field jitter due to voltage ripple at any frequency is << current jitter at low f.</p>
 - ...still one should be careful to resonances...
 - Introduced a new possible PC class (1-2)
 - Is a class 2 PC with a different ADC module.
 - Significant additional cost (about 200 kCHF more in total) if we "buy" it!

Main parameters for each (main) circuit

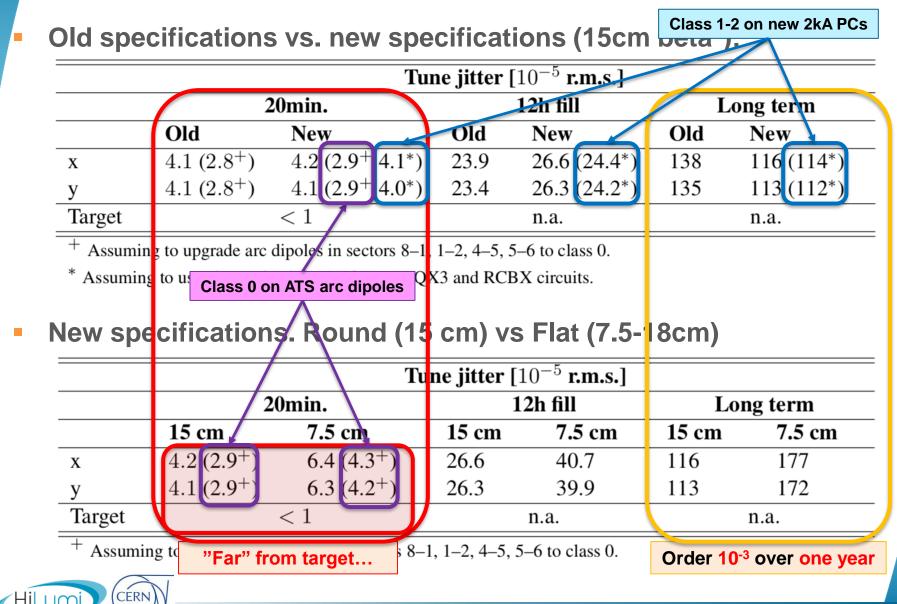
Circuit	I_{rated} [A]	PC class	Short term stabil-	Stability during a	Long term fill-to-	
name			ity [ppm 2×r.m.s.]	fill (12 h) [ppm	fill stability [ppm	
				2× r.m.s.]	2× r.m.s.]	max
\mathbf{RB}^{a}	13000	1	0.4	2	10 (9.5)	
$RQ(D/F)^a$	13000	1	0.4	2	10 (9.5)	Q V
RQX	18000	0	0.2	1	10 (9.5)	
RTQX1	2000	2	+(1.2)	5 (15.5)	20 (26.5)	
$RTQXA1^{b}$	120 (60)	4	5	20 (40)	100 (64)	
RTQX3	2000	2	+(1.2)	5 (15.5)	20 (26.5)	
RCBX	2000	2	+(1.2)	5 (15.5)	20 (26.5)	
\mathbf{RQSX}^d	200 (600)	3	2	5 (34)	50 (56)	
RC(S/O)X	120	3 (4)	2(5)	5 (40)	50 (64)	
RC(D/T)X	120	3 (4)	$\frac{2}{5}$	5 (40)	50 (64)	
RD(1/2)	13000	0	0.2	1	10 (9.5)	
RCBRD	600	3	2	5 (34)	50 (56)	
$RQ(4/5)^{a}$	6000	2	\pm (1.2)	5 (15.5)	20 (26.5)	
$RCBY^{a}$	120	4	5	20 (40)	100 (64)	
$RQ6^{a}$	6000	2	1 (1.2)	5 (15.5)	20 (26.5)	
\mathbf{RCBC}^{a}	120	4	5	20 (40)	100 (64)	
RTB8 ^c	300 (600)	3	2	5 (34)	50 (56)	_

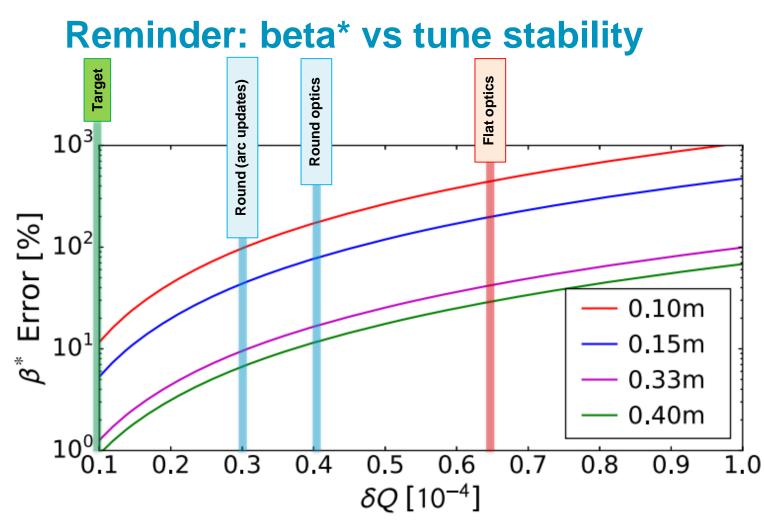
^a Existing circuit assumed not to be upgraded.

^b The rated current for this circuit has not been defined yet. The proposed value is compatible with the use of the trim as $I_{max} = 35$ A in operation.


 c A standard 600 A PC of class 3 is assumed even though $I_{max}=250$ A in operation.

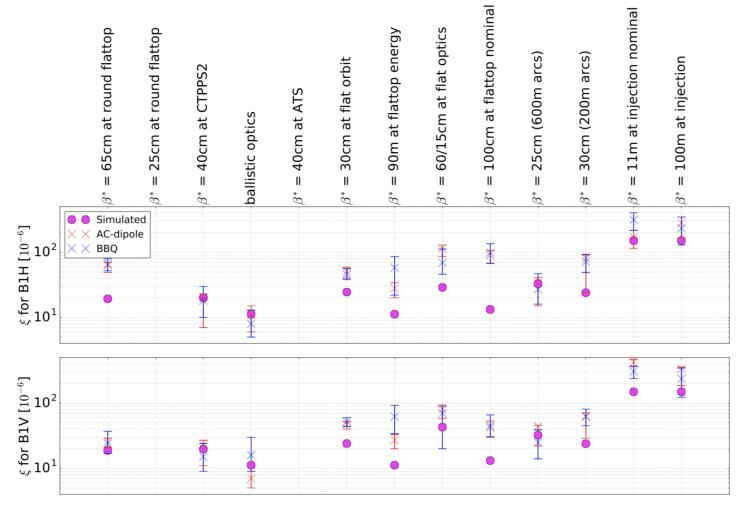
^d A standard 600 A PC of class 3 is assumed even though $I_{max} = 200$ A in operation.



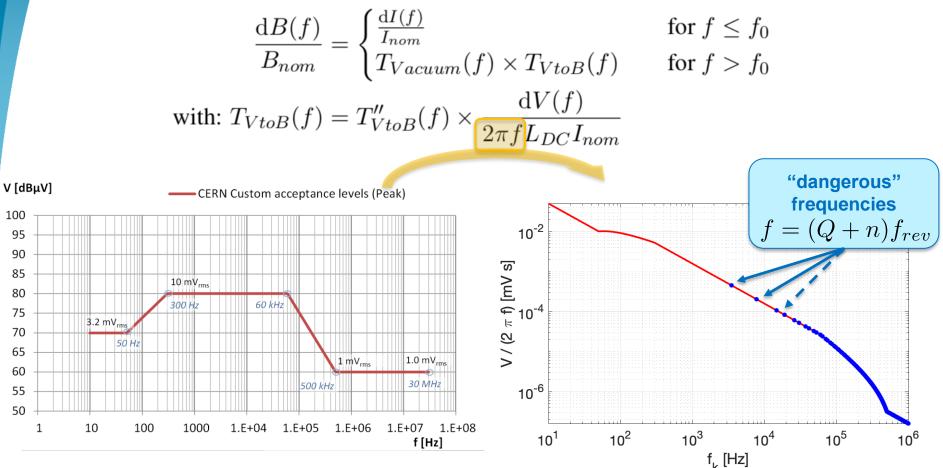

ω

Optics sensitivity: impact on tune

Expected tune stability



- The smaller beta* the more difficult to measure/correct the optics
 - => danger for luminosity reach/imbalance.
 - Smaller beta* only toward the end of the fill with beta* levelling.


LHC experience: how far are we from PC noise limit?

Simulations seems to be consistent with observed tune jitter.

Observation: voltage ripple

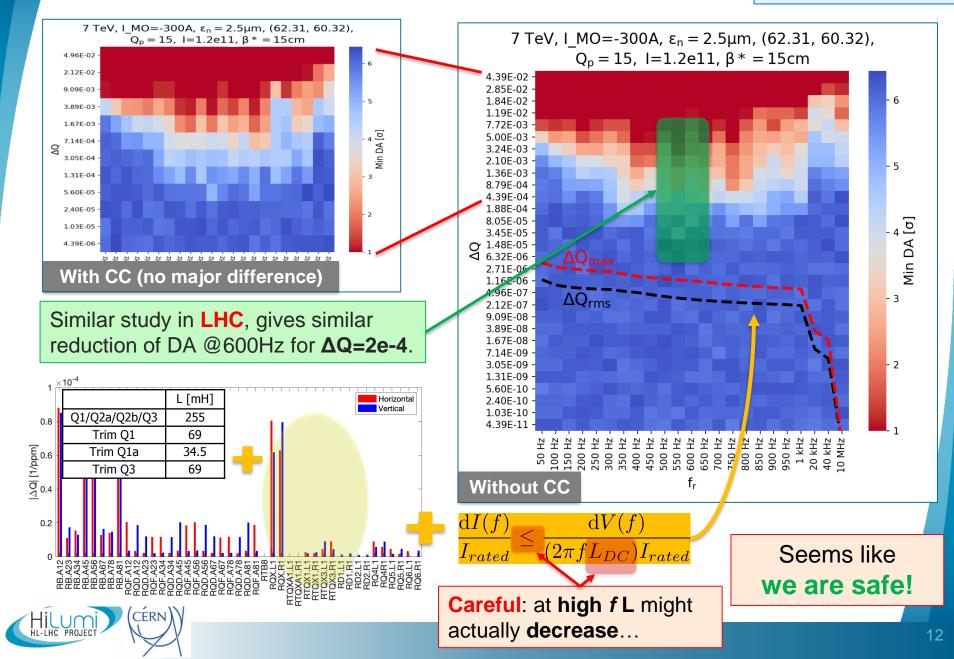
- This only give acceptance levels, it should be populated only by a few lines
- No information between 0.1 and 10 Hz
 - We always assume that there are no lines there, but is it true?

	ming accep 3.2 mV do + Simplif		1 Hz	$\frac{\mathrm{d}I(f)}{I_{rated}}$	$\leq - \sqrt{V}$	$\frac{\mathrm{d}V}{(2\pi f L_{DC})^2}$	$\frac{(f)}{+R_{DC}^2}I_{rated}$
Circuit name	I _{rated} [A]	L [mH]	R [m Ω]	Δ <i>I</i> / <i>I</i> _{re} @0.1H @3.2m [ppm 1	lz iV 🔨	ΔI/I _{rated} @10Hz @3.2mV [ppm rms	Realistic?
RB ^a	13000	15708	1	<0.1		«0.1	Extreme! PC should
$RQ(D/F)^{a}$	13000	263	1	1.5		<0.1	
RQX	18000	255	0.3	1.1	Would	<0.1	normally still be in
RTQX1	2000	69	1.4	37	<u>u</u>	0.4	current regulation (not specified
$RTQXA1^{b}$	120 (60)	34.5	n.a.	4213	d be	42	anywhere(?))
RTQX3	2000	69	1.4	37		0.4	
RCBX	2000	29	1.5	101	Ina	1	
\mathbf{RQSX}^d	200 (600)	1247	10	20.4	CC	0.2	
RC(S/O)X	120	118	13	354	unacceptable	3.6	
RC(D/T)X	120	52	13	755	iab	8	
RD(1/2)	13000	25	0.2	16		0.2	
RCBRD	600	600	1	18	Val	0.2	
$RQ(4/5)^{a}$	6000	74	0.6	18	values!	0.2	
RCBY ^a	120	5270	n.a.	10	<u>s</u>	0.1	
$RQ6^{a}$	6000	21	0.5	52		0.5	
$RCBC^{a}$	120	2840	n.a.	20		0.2	
$RTB8^{c}$	300 (600)	127	12.9	158		1.6	

'YI

Voltage ripple -> current (from PC "Noise")

Assuming "Noise" value is measured with L = 1mH (or less) + Simplified model


 $\frac{\mathrm{d}I(f)}{I_{rated}} \leq Noise \times \frac{1[mH]}{L[mH]}$

Careful: at high f L might actually decrease...

Noise (0.1-500 Hz) [2	exr.m.s. ppm]	PC cl	ass: 0 ^a 3	1 ^a 1 5	Ⅰ-2 4 1(2 (7)	3 15	4 25 (19)
Circuit name	I _{rated} [A]	L [mH]	PC class	Short term stability	Noise		Scaled Noise	More
RB^a	13000	15708	1	0.4	5 5		<0.1	
$\frac{RQ(D/F)^a}{RQX}$	13000 18000	263 255	1 0	0.4 0.2	3	-	<0.1 <0.1	reasonable
RTQX1 RTQXA1 ^b	2000 60	69 34.5	2 4	1.2 5	7 19		0.1 0.6	ona
RTQX3	2000	69	2	1.2	7		0.1	
$f RCBX RQSX^d$	2000 600	29 1247	2 3	1.2 2	7 15		0.2 <0.1	values
RC(S/O)X	120	118	4	5	19		0.2	les.
RC(D/T)X RD(1/2)	120 13000	52 25	4 0	5 0.2	19 3		0.4 0.1	but
RCBRD	600	600	3	2	15		<0.1	
$RQ(4/5)^a$ $RCBY^a$	6000 120	74 5270	2 4	1.2 5	7 19		0.1 <0.1	but b
$\mathbf{RQ6}^{a}$	6000	21	2	1.2	7		0.3	but
RCBC ^a RTB8 ^c	120 600	2840 127	4 3	5 2	19 15		<0.1 0.1	•

Dynamic Aperture studies

Preliminary by S. Kostoglou

Also: Expected Orbit Stability

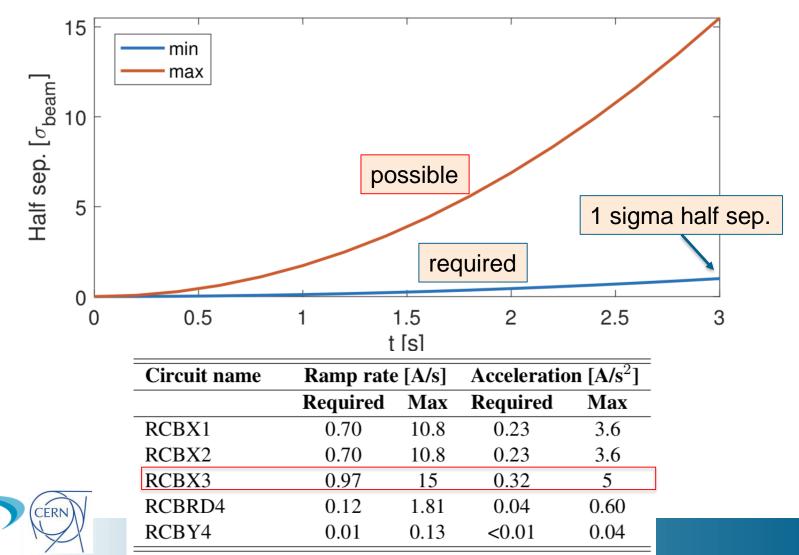
Old specifications vs. new specifications (15cm beta*):

			$\Delta(x)$	$^{*} y^{*})$ [10^{-2}	σ_{beam} r.m.s.]		
		2	0min.	1	2h fill		ong term
		Old	New	Old	New	Old	New
	IP1 H	$0.3~(0.2^+)$	$0.3 (0.3^+ 0.3^*)$	1.3	2.6 (2.1*)	8.8	8.2 (7.7*)
	IP1 V	$0.2 (0.2^+)$	$0.2 \ (0.2^+ \ 0.2^*)$	1.1	2.3 (1.8*)	6.2	4.7 (4.0*)
	IP5 H	$0.3~(0.3^+)$	$0.3 (0.3^+ \ 0.3^*)$	1.8	2.7 (2.2*)	11.2	8.9 (8.4*)
	IP5 V	$0.2 (0.2^+)$	$0.2 \ (0.2^+ \ 0.2^*)$	1.2	2.3 (1.8*)	6.4	4.8 (4.1*)
	+ Assuming	to upgrade arc d	lipoles in sectors 8–1	1-2, 4-5, 5-	6 to class 0.		
	* Assuming	o use class 1-2	PC for RTQX1, RTQ	K3 and RCB2	X circuits.		
N	ew spec	ification	s. Round (1	5 cm) v	vs Flat (7.	5-18cm	n)
N	ew spec		· · · ·	$ y^*)$ [10^{-2}	σ_{beam} r.m.s.]		
N	ew spec	2	$\Delta(x^*$ 0min.	$ y^*)$ [10^{-2} 1	σ_{beam} r.m.s.] 2h fill	L	ong term
N		20 15 cm	$\frac{\Delta(x)}{0 \text{min.}}$ 7.5 cm	y*) [10 ⁻² 1 15 cm	σ _{beam} r.m.s.] 2h fill 7.5 cm	Lo 15 cm	ong term 7.5 cm
N		20 15 cm 0.3 (0.3 ⁺)		$ y^*) [10^{-2}]$ 1 15 cm 2.6	σ _{beam} r.m.s.] 2h fill 7.5 cm 3.0	Lo 15 cm 8.2	ong term 7.5 cm 9.2
N	IP1 H IP1 V	20 15 cm 0.3 (0.3 ⁺) 0.2 (0.2 ⁺)		$ y^*) [10^{-2}]$ 1 15 cm 2.6 2.3	$[\frac{\sigma_{beam} \text{ r.m.s.}]}{2 \text{h fill}}$ $[\frac{7.5 \text{ cm}}{3.0}$ 2.7	15 cm 8.2 4.7	5 cm 9.2 5.1
N	IP1 H IP1 V IP5 H	20 15 cm 0.3 (0.3 ⁺) 0.2 (0.2 ⁺) 0.3 (0.3 ⁺)	$\begin{array}{r} \Delta(x) \\ \hline \textbf{0min.} \\ \hline \textbf{7.5 cm} \\ \hline 0.3 \ (0.3^+) \\ 0.3 \ (0.3^+) \\ 0.4 \ (0.4^+) \end{array}$	$ y^*) [10^{-2}]$ 1 1 15 cm 2.6 2.3 2.7	σ _{beam} r.m.s.] 2h fill 7.5 cm 3.0	La 15 cm 8.2 4.7 8.9	ong term 7.5 cm 9.2
N	IP1 H IP1 V	20 15 cm 0.3 (0.3 ⁺) 0.2 (0.2 ⁺)		$ y^*) [10^{-2}]$ 1 15 cm 2.6 2.3	$[\frac{\sigma_{beam} \text{ r.m.s.}]}{2 \text{h fill}}$ $[\frac{7.5 \text{ cm}}{3.0}$ 2.7	15 cm 8.2 4.7	5 cm 9.2 5.1
N	IP1 H IP1 V IP5 H	20 15 cm 0.3 (0.3 ⁺) 0.2 (0.2 ⁺) 0.3 (0.3 ⁺) 0.2 (0.2 ⁺)	$\frac{\Delta(x^{*})}{0 \text{min.}}$ $\frac{7.5 \text{ cm}}{0.3 (0.3^{+})}$ $0.3 (0.3^{+})$ $0.4 (0.4^{+})$ $0.3 (0.3^{+})$ $\frac{0.3 (0.3^{+})}{0.3 (0.3^{+})}$	$ y^*) [10^{-2}]$ 1 15 cm 2.6 2.3 2.7 2.3	σ_{beam} r.m.s.] 2h fill 7.5 cm 3.0 2.7 3.3 2.6	La 15 cm 8.2 4.7 8.9 4.8	7.5 cm 9.2 5.1 10.5 5.1
N	IP1 H IP1 V IP5 H IP5 V	20 15 cm 0.3 (0.3 ⁺) 0.2 (0.2 ⁺) 0.3 (0.3 ⁺) 0.2 (0.2 ⁺) Neg	$\begin{array}{r} \Delta(x) \\ \hline \textbf{0min.} \\ \hline \textbf{7.5 cm} \\ \hline 0.3 \ (0.3^+) \\ 0.3 \ (0.3^+) \\ 0.4 \ (0.4^+) \end{array}$	$ y^*) [10^{-2}]$ 1 15 cm 2.6 2.3 2.7 2.3	$\frac{\sigma_{beam} \text{ r.m.s.}]}{2\text{h fill}}$ $\frac{7.5 \text{ cm}}{3.0}$ 2.7 3.3	La 15 cm 8.2 4.7 8.9 4.8	5 ong term 7.5 cm 9.2 5.1 10.5

1-

Other topic: orbit separation collapse

Other topic: orbit separation collapse


- +- 0.75 mm separation knob requires very little strength compared to total available.
- Ramp/acceleration rate were chosen from orbit feedback considerations

Circuit name	Half-	$\int B_{nom} \mathbf{d}l$	<i>I</i> _{nom} [A]	· ·	te Acceleration
	separation	[Tm]		[A/s]	[A/s ²]
	[Tm]				
RCBX1	0.08	2.5	1600	15	5
RCBX2	0.08	2.5	1600	15	5
RCBX3	0.20	4.5	1600	15	5
RCBRD4	0.10	5	430	2	1
RCBY4	0.02	2.79	88	0.67	0.25
		From or conside	bit feedback rations		

Other topics: orbit separation collapse

- Requirement: from 2 to 0 beam sigma in less than 3 seconds
- Here assuming round beta* = 70cm

16

(My) Conclusions

- New PC specs not too different from old ones.
 - No major impact on tune jitter/orbit in using:
 - class 4 PCs for 120A circuits
 - RQSX powered by a 600A PC
 - **RTB8** powered by a **600A** PC
 - No sizable improvement from adopting class 1-2
 - Proposed to "skip" this class and save money.
- Over one year: 10⁻³ tune jitter; 10%σ beam orbit jitter
 - No need of a remote calibration system for class 0 PCs
- Specs. in 0.1 a few Hz range are a bit dodgy
 - Should maybe improve definitions/constraints.
 - From "Noise" guess everything seems fine
 - "High" frequency regime seems to be fine.
 - To be kept under control with new findings...
- Orbit separation collapse can be executed much faster than required
 - (at least from a circuit/PC point of view)

