cﬂ
\

NS

Modern Software Stack
Building for HEP

Graeme A Stewart, Ben Morgan, Javier Cervantes Villanueva, Hobbs Willett

2019-11-05

Software Building and Packaging for HEP

e Software is one of the central pillars of HEP experiments

e We have a wide range of requirements on our software, covering diverse use cases
o Event generation, Simulation, DAQ, Reconstruction, Analysis

e HEP software lives as a connected series of packages
o tar -x .. foo && make && make installjustwon’tdo
o In other words no package is an island
m Dependencies on already installed pieces of software, often coming from the underlying
distribution as well as other built dependencies
o These dependencies have to be found by the build system of any package
o A most sophisticated build orchestrator will check for these dependencies and pre-build them on
demand

e This consistent set of packages, built in harmony, we refer to as a software stack

Most General = Most Specific

HEP Application Software

Application layer of modules/algorithms/processors

Applications

that perform physics tasks (some generic examples
— like FastJet, Acts and PandoraPFA)

W

EDM Database
Interfaces

Usually experiment specific libraries for data
representation and access: e.g. xAOD, LCIO; also
detector specific conditions data

- Experiment Framework

~——_ __ Experiment core orchestration layer, where

everything else plugs in: Gaudi, CMSSW, Marlin

~— __ Specific components used by many
experiments: Geant4, DELPHES, Pythia, ...

Provide core functionality widely used: ROOT,
HepMC, HepPDT, DD4hep, ...

——__ Many widely used non-HEP libraries: Boost,
Python, Zlib, CMake, ...

HEP Software Stacks and Deployment

e HEP software stacks, in common with many software projects, need to

maintain multiple versions
o These versions generally evolve their external dependencies as well
o Unlike other projects these versions usually have to be maintained for many years

e Build system must be able to support and patch stack versions years after their

original deployment
o External dependency issues can occasionally be the issue requiring patching
o Significant trouble can arise when an underlying OS distribution dependency goes out of
support
e Deploymentis a closely coupled problem to the actual build
o Our lives have been hugely eased by the widespread adoption of CVMFS and container
technology

HEP Software Foundation Packaging H F

Working Group

HEP Software Foundation

[link
e Packaging and deploying a software stack is a problem faced right across HEP

and the wider scientific community
o Every experiment and software group has to put effort into doing this
o Naively it seems an easy problem, but it quickly gets complicated and seemingly obvious
solutions don’t meet requirements
e Motivated formation of WG in 2015 as a forum for working together to improve
o Knowledge sharing on tools and workflows in and outside HEP
o See talk by Ben Morgan at CHEP 2018
e We looked at many tools - general FOSS, scientific community, HEP specific
o We extracted use cases and provided bootstrap instructions to try out a number of tools

o Focus now moved to implementation of stack using the most promising candidates...
m Group continues to meet regularly for progress reports and to exchange information

https://indico.cern.ch/event/587955/contributions/2938568/
https://docs.google.com/document/d/1h-r3XPIXXxmr5tThIh6gu6VcXXRhBXtUuOv14ju3oTI/edit?usp=sharing
https://hepsoftwarefoundation.org/workinggroups/packaging.html

Quick Summary of Desiderata...
e Support NxM complexity

o Software versions

o Architectures (and micro architectures), with build options
e Reproducibility

o Capture all dependencies reliably

m Minimise/eliminate dependency on underlying OS distribution

e Relocatable build products

o Should not be tied to one install path at build time

o CVMFS, container, local install, ...

o Binary build products
e Runtime environment setup

o Production and developer use cases differ slightly, both must be supported

Spack

Package manager and build orchestrator developed at Lawrence Livermore National
Laboratory
Originally developed for installing software to HPC systems
o Strong emphasis on scientific software
Supports multiple versions of software concurrently
o Appends build hashes to install locations, RPATH used to resolve the correct dependencies

o Common dependencies are shared
o Support for different compiler toolchains as a core concept

Dependencies are found and installed automatically
o Full specification of all build options for dependencies supported
o Will rebuild or install from existing binary build products

Configuration on command line or from YAML files
o Package descriptions written in Python

Large community of contributors, supporting 3.5k packages
o Active HEP sub-community (and Slack channel)

http://spack.io

Future Circular Collider =

[FCCSW - Main package }

e FCC project aims at a next generation collider in a FCC Externals
. N fcc-edm papas podio fcc-physics
circular tunnel of “100km at CERN acts-core gaudi tricktrack heppy

e [CC software stack is not huge, but builds on top of an

existing CERN built software stack
o LCG Release

e Instructing Spack to take software pre-built in another
build system is done:

LCG Releases - Common experiment software

i
roo buildable: falce Generated Reconstructed
paths: { Particles Particles
root@6.14.04%gcc@6.2.0
arch=x86_64-centos7: 3 3
/cvmfs/sft.cern.ch/lcg/releases/LCG_94/ Energy deposits Reconstruction
ROOT/6.14.04/x86_64-centos7-gcc62-opt
} SimHits RecHits
Raw data
o Same technique can be used to take packages from the OS (or
8

anywhere else)

Build, Cache and Deploy to CVMFS " Build Process

Output of a build is a binary tarball PR /

o Putthis in a cache visible to the CVMFS server Binary tarballs
On CVMFS server run Spack to install the |

buildcache binary
o Buildcache was a HEP contribution to Spack
Relocation is done at this stage /

o patchelf to update RPATHs
o sed-esque process for configuration and other text

spack buildcache install /pkghash

Installation }

[Binary relocation }

files View creation |
Issue: have to use the same platform as the Ak i sy path] fecdevel/prnash
target to ensure correctness F ﬁ
o Docker containers were a workaround when target CVMFS

OS = CVMFS master OS
o Enhancement now done

supernemo

Spack for SuperNEMO

e Small (Y100 people) experiment searching for Neutrinoless
Double Beta Decay

e Simple stack (Boost+tROOT+Geant4+Experiment), but low FTE on computing
requires off-the-shelf solution

e Used Home/Linuxbrew for many years, reached limits of its “rolling release”
and C++/Python support capabilities

e Spack identified through HSF as best tool going forward, both technically and
to benefit from/contribute to community efforts

e Important to support Linux and macOS build-from-source

e No CVMFS hosting available to experiment, so binary packaging and/or
Containers also required

collaboration

10

Migrating SuperNEMO to Spack

e Migration system via fork of Spack on GitHub, plus custom snemo branch
o Aim to support CentOS7, Ubuntu 18.04, macOS Mojave/Catalina natively, plus CentOS7
Docker/Singularity images

e Site-scope packages.yaml to reuse X11, GL, SSL, etc.
o Same method as FCC

e Site-scope additional repository for SuperNEMO-specific packages and custom
variants of certain Spack packages (e.g. Qt)

® |ssues with C++ standard and macOS discussed and fixed upstream

e Now investigating use of metapackages and environments+views to create
runtime/development environments

e Working with Key4hep on binary packaging, CVMFS deployment, and use

with/over Docker/Singularity
1"

Key4dhep

e Software challenges are faced by detector community at future facilities

e Likely to be a Higgs-factory, but several different projects are possible:
o CEPC, CLIC, FCC-eg, ILC

e Need for software which is robust, mature, yet sufficiently flexible to try new
ideas

Jet tagging capabilities with 5TeV b-jets in FCC-hh, but using the
CLIC software and the FCC vertex tracker, combined in the CLIC
detector model

André Sailer, CLIC

H See talk by Andre Sailer, Tuesday 17.45 Track X

https://indico.cern.ch/event/773049/contributions/3474763/

Key4hep Prototype Build

e Build a software stack that can be used for key4hep workflows
o Event generation
o Simulation, with detector description
o [Reconstruction], with experiment software framework
o Analysis

e We selected to continue our work in Spack as the package orchestrator
o Version 01
Spack first builds its own compiler (currently gcc9.2.0), for full self-consistency
Key top level packages:
m Pythia, Geant4, DD4hep, Gaudi, ROOT
m Use Spack’s packages.yaml to set reproducible build options
All building successfully
o Binary packages uploaded to build cache

o

(@)

o

13
D

Key4hep Prototype Build

e Installation is from build cache to new path
o Same model as FCC

e Relocation is validated by checking the RPATH of relocated binaries and
libraries

e Runtime environment is setup using environment modules

o Commonly used in HPC centres
o Sets up necessary entry point environment variables
o Plus any auxiliary variables required by packages (e.g. Geant4 data files, ROOTSYS)

e N.B. Use of RPATH prevents interference between Key4hep stack and system
binaries
e Basic tests in place to check functionality

14

Conclusions

e Building, packaging and deploying software is a shared problem across HEP

e HSF Packaging Working Group is an active open forum for discussion and
cooperation

e Spack has been successfully tested as a build orchestrator for modern HEP

software stacks
o FCC
o SuperNEMO
o Keydhep
o Neutrino experiments
e Production workflows now in development
o Learning from FCC experience helps, switching to self-consistent Spack build actually makes this
simpler

“ See SpackDev talk later this session

15
D

https://indico.cern.ch/event/773049/contributions/3473250/

