
Modern Software Stack
Building for HEP
Graeme A Stewart, Ben Morgan, Javier Cervantes Villanueva, Hobbs Willett

2019-11-05

Software Building and Packaging for HEP

● Software is one of the central pillars of HEP experiments
● We have a wide range of requirements on our software, covering diverse use cases

○ Event generation, Simulation, DAQ, Reconstruction, Analysis

● HEP software lives as a connected series of packages
○ tar -x … foo && make && make install just won’t do
○ In other words no package is an island

■ Dependencies on already installed pieces of software, often coming from the underlying
distribution as well as other built dependencies

○ These dependencies have to be found by the build system of any package
○ A most sophisticated build orchestrator will check for these dependencies and pre-build them on

demand

● This consistent set of packages, built in harmony, we refer to as a software stack

2

HEP Application Software

3

Many widely used non-HEP libraries: Boost,
Python, Zlib, CMake, …

Provide core functionality widely used: ROOT,
HepMC, HepPDT, DD4hep, ...

Specific components used by many
experiments: Geant4, DELPHES, Pythia, ...

Experiment core orchestration layer, where
everything else plugs in: Gaudi, CMSSW, Marlin

Usually experiment specific libraries for data
representation and access: e.g. xAOD, LCIO; also
detector specific conditions data

Application layer of modules/algorithms/processors
that perform physics tasks (some generic examples
like FastJet, Acts and PandoraPFA)

M
os

t G
en

er
al

 →
 M

os
t S

pe
ci

fic

HEP Software Stacks and Deployment

● HEP software stacks, in common with many software projects, need to
maintain multiple versions
○ These versions generally evolve their external dependencies as well
○ Unlike other projects these versions usually have to be maintained for many years

● Build system must be able to support and patch stack versions years after their
original deployment
○ External dependency issues can occasionally be the issue requiring patching
○ Significant trouble can arise when an underlying OS distribution dependency goes out of

support

● Deployment is a closely coupled problem to the actual build
○ Our lives have been hugely eased by the widespread adoption of CVMFS and container

technology

4

HEP Software Foundation Packaging
Working Group

● Packaging and deploying a software stack is a problem faced right across HEP
and the wider scientific community
○ Every experiment and software group has to put effort into doing this
○ Naively it seems an easy problem, but it quickly gets complicated and seemingly obvious

solutions don’t meet requirements

● Motivated formation of WG in 2015 as a forum for working together to improve
○ Knowledge sharing on tools and workflows in and outside HEP
○ See talk by Ben Morgan at CHEP 2018

● We looked at many tools - general FOSS, scientific community, HEP specific
○ We extracted use cases and provided bootstrap instructions to try out a number of tools
○ Focus now moved to implementation of stack using the most promising candidates…

■ Group continues to meet regularly for progress reports and to exchange information

[link]

5

https://indico.cern.ch/event/587955/contributions/2938568/
https://docs.google.com/document/d/1h-r3XPIXXxmr5tThIh6gu6VcXXRhBXtUuOv14ju3oTI/edit?usp=sharing
https://hepsoftwarefoundation.org/workinggroups/packaging.html

Quick Summary of Desiderata…
● Support NxM complexity

○ Software versions
○ Architectures (and micro architectures), with build options

● Reproducibility
○ Capture all dependencies reliably

■ Minimise/eliminate dependency on underlying OS distribution

● Relocatable build products
○ Should not be tied to one install path at build time
○ CVMFS, container, local install, …
○ Binary build products

● Runtime environment setup
○ Production and developer use cases differ slightly, both must be supported

6

Spack
● Package manager and build orchestrator developed at Lawrence Livermore National

Laboratory
● Originally developed for installing software to HPC systems

○ Strong emphasis on scientific software

● Supports multiple versions of software concurrently
○ Appends build hashes to install locations, RPATH used to resolve the correct dependencies
○ Common dependencies are shared
○ Support for different compiler toolchains as a core concept

● Dependencies are found and installed automatically
○ Full specification of all build options for dependencies supported
○ Will rebuild or install from existing binary build products

● Configuration on command line or from YAML files
○ Package descriptions written in Python

● Large community of contributors, supporting 3.5k packages
○ Active HEP sub-community (and Slack channel)

7

spack.io

http://spack.io

Future Circular Collider

● FCC project aims at a next generation collider in a
circular tunnel of ~100km at CERN

● FCC software stack is not huge, but builds on top of an
existing CERN built software stack
○ LCG Release

● Instructing Spack to take software pre-built in another
build system is done:

○ Same technique can be used to take packages from the OS (or
anywhere else) 8

LCG Releases - Common experiment software

FCC Externals
fcc-edm papas podio fcc-physics
acts-core gaudi tricktrack heppy

FCCSW - Main package

 root:
buildable: false
paths:{

 root@6.14.04%gcc@6.2.0
 arch=x86_64-centos7:
 /cvmfs/sft.cern.ch/lcg/releases/LCG_94/
 ROOT/6.14.04/x86_64-centos7-gcc62-opt
}

Build, Cache and Deploy to CVMFS
● Output of a build is a binary tarball

○ Put this in a cache visible to the CVMFS server

● On CVMFS server run Spack to install the
buildcache binary
○ Buildcache was a HEP contribution to Spack

● Relocation is done at this stage
○ patchelf to update RPATHs
○ sed-esque process for configuration and other text

files

● Issue: have to use the same platform as the
target to ensure correctness
○ Docker containers were a workaround when target

OS != CVMFS master OS
○ Enhancement now done

9

Installation

CVMFS

View creation

Binary relocation

Binary tarballs

spack buildcache install /pkghash

spack view symlink [path] fccdevel/pkghash

Build Process

Spack for SuperNEMO

● Small (~100 people) experiment searching for Neutrinoless
Double Beta Decay

● Simple stack (Boost+ROOT+Geant4+Experiment), but low FTE on computing
requires off-the-shelf solution

● Used Home/Linuxbrew for many years, reached limits of its “rolling release”
and C++/Python support capabilities

● Spack identified through HSF as best tool going forward, both technically and
to benefit from/contribute to community efforts

● Important to support Linux and macOS build-from-source
● No CVMFS hosting available to experiment, so binary packaging and/or

Containers also required
10

Migrating SuperNEMO to Spack

● Migration system via fork of Spack on GitHub, plus custom snemo branch
○ Aim to support CentOS7, Ubuntu 18.04, macOS Mojave/Catalina natively, plus CentOS7

Docker/Singularity images

● Site-scope packages.yaml to reuse X11, GL, SSL, etc.
○ Same method as FCC

● Site-scope additional repository for SuperNEMO-specific packages and custom
variants of certain Spack packages (e.g. Qt)

● Issues with C++ standard and macOS discussed and fixed upstream
● Now investigating use of metapackages and environments+views to create

runtime/development environments
● Working with Key4hep on binary packaging, CVMFS deployment, and use

with/over Docker/Singularity
11

Key4hep

● Software challenges are faced by detector community at future facilities
● Likely to be a Higgs-factory, but several different projects are possible:

○ CEPC, CLIC, FCC-ee, ILC

● Need for software which is robust, mature, yet sufficiently flexible to try new
ideas

12

Jet tagging capabilities with 5TeV b-jets in FCC-hh, but using the
CLIC software and the FCC vertex tracker, combined in the CLIC
detector model

André Sailer, CLIC

See talk by André Sailer, Tuesday 17.45 Track X

https://indico.cern.ch/event/773049/contributions/3474763/

Key4hep Prototype Build

● Build a software stack that can be used for key4hep workflows
○ Event generation
○ Simulation, with detector description
○ [Reconstruction], with experiment software framework
○ Analysis

● We selected to continue our work in Spack as the package orchestrator
○ Version 0.1
○ Spack first builds its own compiler (currently gcc9.2.0), for full self-consistency
○ Key top level packages:

■ Pythia, Geant4, DD4hep, Gaudi, ROOT
■ Use Spack’s packages.yaml to set reproducible build options

○ All building successfully
○ Binary packages uploaded to build cache

13

Key4hep Prototype Build

● Installation is from build cache to new path
○ Same model as FCC

● Relocation is validated by checking the RPATH of relocated binaries and
libraries

● Runtime environment is setup using environment modules
○ Commonly used in HPC centres
○ Sets up necessary entry point environment variables
○ Plus any auxiliary variables required by packages (e.g. Geant4 data files, ROOTSYS)

● N.B. Use of RPATH prevents interference between Key4hep stack and system
binaries

● Basic tests in place to check functionality

14

Conclusions

● Building, packaging and deploying software is a shared problem across HEP
● HSF Packaging Working Group is an active open forum for discussion and

cooperation
● Spack has been successfully tested as a build orchestrator for modern HEP

software stacks
○ FCC
○ SuperNEMO
○ Key4hep
○ Neutrino experiments

● Production workflows now in development
○ Learning from FCC experience helps, switching to self-consistent Spack build actually makes this

simpler

15

See SpackDev talk later this session

https://indico.cern.ch/event/773049/contributions/3473250/

