
ALFA: A framework for building
distributed applications

Mohammad Al-Turany, Alexey Rybalchenko, Dennis Klein, Matthias
Kretz, Dmytro Kresan, Radoslaw Karabowicz, Andrey Lebedev, Anar

Manafov, Thorsten Kollegger and Florian Uhlig

Developed in common by FairRoot Group
(GSI), FAIR experiments and ALICE

04.11.2019 2M. Al-Turany, CHEP 2019, Adelaide, Australia

ALFA has a data-flow based model:

04.11.2019 M. Al-Turany, CHEP 2019, Adelaide, Australia 3

Message Queues based multi-processing

Works locally and across most networks!

04.11.2019 M. Al-Turany, CHEP 2019, Adelaide, Australia 4

• Ethernet
– ZMQ, nanomsg

• InfiniBand (IPoverIB,
RDMA)
– ZMQ, nanomsg, OFI

• Shared Memory
Transport
– Boost

ALFA building block (FairMQ Devices)
• Device takes/passes ownership of data

• Framework user sees only the callback to his algorithm

• Different channels can use different transport engines

User
Algorithm

Ch_1
Ch_2

….
Ch_n

Ch_1
Ch_2

….
Ch_m

FairMQDevice

Input
Data

Output
Data

04.11.2019 M. Al-Turany, CHEP 2019, Adelaide, Australia 5

FairMQ Transport: General
concepts:

• Hide all transport-specific details from the user.
• Clean, unified interface to different data transports.
• Combinations of different transport in one device in a

transparent way.
• Transport switch via configuration only, without

modifying device/user code -> same API for all
transports.

FairMQ Transport:
Ownership

• Message owns data.
• Sender device (user code) passes ownership of data to

framework with send call.
• Framework transfers to next device, passes ownership

to receiver (no physical copy of the data with shared
memory transport).

• No sharing of ownership between different devices – if
the same message is needed by more than one receiver
it is copied.

FairMQ Shared Memory Transport

node
device 1 device 2

Shared memory segment (boost::interprocess::managed_shared_memory)

handle (valid for node)
-->pointer to data (valid for

process)

msg (handle + size)
meta
data:shmem

msg
msg (handle + size)

meta
data:

04.11.2019 M. Al-Turany, CHEP 2019, Adelaide, Australia 8

FairMQ Shared Memory Transport
Implementation

• boost::interprocess library for management and allocation of
shared memory - cross-platform shared memory implementation
with many features such as different allocation algorithms,
shmem STL-like containers, shmem smart pointers, message
queues and many more.

• ZeroMQ library for transfer of the meta information associated
with the memory – allows us to reuse communication patterns of
ZeroMQ (PUSH/PULL, PAIR, REQ/REP) and offers higher
performance than boost::interprocess::message_queue.

FairMQ Shared Memory Transport
Features

• PAIR, PUSH/PULL, REQ/REP communication patterns
• Support for multipart messages
• Managed shared memory that is completely transparent for the

user.

Example: Time frame in Alice O2 data model
Headers defines the type of data. Different header types can be stacked to store extra metadata
(mimicking a Type hierarchy structure). Headers and payloads are usable in a message passing
environment.

FairMQ Shared Memory Transport
Features

• Automatic cleanup of orphan shared memory in case
of device crashes. Optionally a
cleanup/monitoring/debug tool provided for more
control.

• Seamless integration with other transports – no
copies of data between different transports (for
transports that allow adopting foreign data buffer)

• Very high performance – transfer rates in high
kHz/low MHz range, low CPU usage.

FairMQ Shared Memory Transport
Features

• Unmanaged shared memory regions for fine-grained
control of buffer location and handling.

node

device 1 device 2 device 3

shared memory implementation

callbackmsg

msg msg msg

shmem shmem ZeroMQ

UnmanagedRegion

FLP
CRU

Read-Out,
ROC library

Standalone
FairMQ data

transfer
CRU

CRU

CRU DMA over PCIe
FairMQ over shared
memory or Infiniband

O2/FLP
O2/EPN
O2/PDP

Receiving
server
as EPN

emulator

• CRU test data, TPC decoder algorithm integrated in Readout
• Demonstrate usage of available CPU resources at target data throughput

Local
Processing

I
B

H
C
A

Run chain for 8 hours, use as much CPU as possible at target data throughput

SUCCESS: # CRUs x 17.25 Gb/s with Local Processing active

FairMQ for ReadOut in ALICE

04.11.2019 M. Al-Turany, CHEP 2019, Adelaide, Australia 13

Filippo Costa, O2 FLP Plenary 25-Sep-2019

Not only TCP/IP but also RDMA

High data throughput
(>90% link capacity) and
significantly reduced CPU
load

afi_msg_bw: Benchmark in asiofi (base for new FairMQ transport)
fi_msg_bw: Benchmark from Libfabric

04.11.2019 M. Al-Turany, CHEP 2019, Adelaide, Australia 14

Tests on 200Gb/s IB in Feb’19
• Hardware setup provided by CBM/FIAS (Mellanox

engineering sample)

04.11.2019 M. Al-Turany, CHEP 2019, Adelaide, Australia 15

Tests on 200Gb/s IB in Feb’19
• Hardware setup provided by CBM/FIAS (Mellanox

engineering sample)

04.11.2019 M. Al-Turany, CHEP 2019, Adelaide, Australia 15

• Available in : FairMQ v1.4.9 + asiofi v0.4.3

• About 90% of the theoretical throughput is achieved on
experimental systems:
• CBMfles: 97 of max 107 Gb/s IB
• Alice: 60 of max 65 Gb/s RoCE
• Alice: 80-90 of max 100 Gb/s IB

• Optimizing the implementation to utilize the last 10% of
available bandwidth is ongoing

FairMQ OFI Transport
Features

04.11.2019 M. Al-Turany, CHEP 2019, Adelaide, Australia 16

Controlling FairMQ state machine

Controlling FairMQ state machine:
on one device:

• The FairMQ core library provides two device controllers
• Static : a fixed sequence of state transitions

• Interactive: a read-eval-print-loop which reads keyboard
commands from standard input

• A device controller only knows how steer a single FairMQ
device (i.e: it runs in a thread within the device process)

04.11.2019 M. Al-Turany, CHEP 2019, Adelaide, Australia 18

● One has to make the entire cluster state available for the experiment
control system and not single process one

19

Configur
e

Initializ
e

Start Stop

Exported cluster state machine

EPNs internal state machine (FairMQ)

Controlling FairMQ state machine:
on a processing farm

Resources

EPNs

(example)

DDS session
(owns DDS topology)

EPNs

(example)

DDS session
(owns DDS topology)

EPNs

(example)

DDS session
(owns DDS topology)

Processing nodes

Service node
ECS

commands:

init

config

start

stop

term

down

control-client

translates commands

to create/shutdown RMS

session

via

and

control FairMQ devices

via

to change and query

device states

control-server

FairMQ

processing topology

plugin
FairMQ device

(started by DDS Agent)
fair::mq::sdk::Topology

RMS_api

.

.

.

.

.

.

RMS

Controller Design

20

Other services, e.g: CCDB,

Data transfer, etc …

Resources
(example)

EPNs

(example)

DDS session
(owns DDS topology)

EPNs

(example)

DDS session
(owns DDS topology)

EPNs

(example)

DDS session
(owns DDS topology)

Processing node

(example)

service node
(example)ECS

(example)

gRPC

commands:

init

config

start

stop

term

down

control-client

translates commands

to create/shutdown DDS

session

via

and

control FairMQ devices

via

to change and query

device states

control-server

DDS session
(owns DDS topology)

dds plugin
FairMQ device

(started by DDS Agent)
fair::mq::sdk::Topology

dds::tools_api

.

.

.

.

.

.

dds::intercom_api::CCustomCmd

dds::tools_api::CSession

Controller example (DDS based)

21

One DDS session for all processing nodes

DDS-control
An example of how to control/communicate with a system backed by DDS
and FairMQ.

https:// github.com/ FairRootGroup/ DDS-control 22

libFairMQ_SDK.so

find_package(FairMQ COMPONENTS sdk)

Then link against
FairMQ::SDK

#include <fairmq/SDK.h>

23

EPN Resources

EPNs

(example)

DDS session
(owns DDS topology)

EPNs

(example)

DDS session
(owns DDS topology)

EPNs

(example)

DDS session
(owns DDS topology)

EPN

(example)

EPN service

node
(example)ECS

gRPC

commands:

init

config

start

stop

term

down

control-client

translates commands

to create session

Via PMIx/Slurm

and

control FairMQ devices

via

to change and query

device states

control-server

DDS session
(owns DDS topology)

PMIx plugin
FairMQ device

(started by DDS Agent)
fair::mq::sdk::Topology

PMIx::tools_api

.

.

.

.

.

.

PMIx::tools

Controller Example (PMIx based)

24

Summary

• ALFA allows developers to write their specific code in
whatever language they choose as long as that language
can send and receive data through message queues.

• allows non-expert to write messaged based code without
going into the details of the transport or the system
below

• offers a clean and maintainable and extendable interface
to the existing different data transport (ZMQ, nanomsg,
shared Memory, OFI, ..etc)

• provides utilities to deploy and control topologies on
computing clusters, online clusters as well as on a laptop

04.11.2019 M. Al-Turany, CHEP 2019, Adelaide, Australia 25

Backup

2604.11.2019 M. Al-Turany, CHEP 2019, Adelaide, Australia

asiofi (C++ Boost.Asio language bindings for
OFI libfabric)

27

• The asiofi library provides a C++ Boost.Asio
interface to OpenFabric Interface’s libfabric
and is used to implement the FairMQ OFI
transport.

https://github.com/FairRootGroup/asiofi

04.11.2019 M. Al-Turany, CHEP 2019, Adelaide, Australia

PMIx (Process Management Interface for
Exascale)

● Originally developed and distributed as part of MPICH, has historically

been used as a means of exchanging wireup information needed for

interprocess communication and deployment of processes
○ Distributed key/value store for data exchange

○ Asynchronous events for coordination

○ Enable interactions with the resource manager

● PMIx also covers: Resource allocation, process/job mgmt

(creation/deletion/monitoring), system information, error notifications

● PMIx provides server, tool, and client APIs

https://github.com/pmix/pmix

https://github.com/pmix/pmix-standard

28

https://github.com/pmix/pmix
https://github.com/pmix/pmix-standard

FairMQ State Machine & Example ECS Command Mapping

ECS

command
DDS/FairMQ actions

init DDS: Create session, submit agents, activate topology -> devices go in Idle state

configure Devices: InitDevice->CompleteInit->Bind->Connect->InitTask

start Devices: Run

stop Devices: Stop

term Devices: ResetTask->ResetDevice->End

down DDS: Shutdown session

29

FairMQ

SinkDevice

FairMQ

SimDevice
push

pull

req

dataStore#all#

FairMQ

SimDevice
push

req

FairMQ

SimDevice
push

req

storeParams

ParameterMQ
Server

rep

Distributed Simulation with FairMQ
1. Each simulation device will generate nEvents;
2. Simulation devices ask ParameterMQServer for the RunId;
3. The ParameterMQServer numbers the devices (DevId=0,1,2,…)

as they connect and sends the DevId back to device together
with RunId;

4. The devices generate events with the same RunId, numbering
events from DevId*nEvents on;

insert digitizers
or other devices

https://github.com/FairRootGroup/FairRoot/tree/dev/examples/MQ/pixelDetector

Radek Karabowicz: Move Simulation to FairMQ

04.11.2019 M. Al-Turany, CHEP 2019, Adelaide, Australia 30

FairMQ-based parallel simulation

Sandro Wenzel

