
Raythena: 
A Vertically Integrated
Scheduler for ATLAS
Applications on
Heterogeneous
Distributed Resources

Paolo Calafiura, Charles Leggett, 
 Miha Muškinja, Illya Shapoval, Vakho Tsulaia 

obo ATLAS Experiment 

 
CHEP in Adelaide 

Tuesday 05 November 2019

05 November 2019 Miha Muškinja

• We are exploring the applicability of a modern distributed execution
framework for ATLAS workflows— Ray1,

• Distributed execution frameworks allows the user to seamlessly transform
a single-node application to run efficiently on a cluster of nodes or on a
(heterogeneous) HPC,

• As a proof-of-concept, we present a Ray-based prototype of the ATLAS Event
Service,

• Advantages of using Ray:
- Ray is widely used by the broader community and centrally maintained.

Using Ray would eliminate the need of supporting some of the ATLAS
home-built software,

- Shown to be scalable on HPCs, lightweight and easy to install (e.g. as a
module),

- It would establish a generic and modular workflow that could be used on all
HPCs as a single solution.

Introduction

2

05 November 2019 Miha Muškinja

Athena framework in ATLAS

• Athena is the main software framework in ATLAS used for all data analysis steps,
• In this application we are using ‘AthenaMP’, the multi-process version of Athena,
• In the Event Service mode, input events are provided on demand by an external

application. The number of input events does not need to be known in advance.

3
https://iopscience.iop.org/article/10.1088/1742-6596/664/7/072050/pdf

AthenaMP scheme

https://gitlab.cern.ch/atlas/athena
https://iopscience.iop.org/article/10.1088/1742-6596/664/7/072050/pdf

27 June 2019 Miha Muškinja

Current scheduling on HPCs (i.e. the Yoda Workflow)

4

https://iopscience.iop.org/article/10.1088/1742-6596/664/7/072050/pdf

Currently composed
of many different
communication
layers developed
‘in-house’ which are
difficult to maintain
with a limited
person power.

WN = Worker Node

https://iopscience.iop.org/article/10.1088/1742-6596/664/7/072050/pdf

27 June 2019 Miha Muškinja

Ray-based ATLAS Event Service

5

Since Ray takes
care of all
communication
between nodes and
orchestration of
workload, the Event
Service application
becomes more
manageable and
more modular.

Ray Driver
application

Ray
Actor

Ray
Actor

Ray
Actor

TCP/IP

TCP/IP

WN = Worker Node

27 June 2019 Miha Muškinja

Ray-based ATLAS Event Service

5

Since Ray takes
care of all
communication
between nodes and
orchestration of
workload, the Event
Service application
becomes more
manageable and
more modular.

Ray Driver
application

Ray
Actor

Ray
Actor

Ray
Actor

TCP/IP

TCP/IP

WN = Worker NodeMerge
jobs

Additional features
such as fault
detection or ‘on-
the-fly’ merging
can be easily
implemented in
the driver
application.

05 November 2019 Miha Muškinja

Asynchronous communication between the Driver and Actors

6

Driver

A1

A2

A3

Driver pings all Actors
simultaneously

event1

Actors control an AthenaMP
instance which processes
events in parallel.

event1 event2 event3 event4

event1 event2 event3 event4

event2

• Asynchronous communication is implemented in a few 100 python lines using Ray
explicit parallelism expressions,

• Actors independently communicate with the AthenaMP instance and report back to the
driver only when an event was processed and new input is needed.

Time

Actor
AthenaMP

W1 W2 WN…

TCP/IP

05 November 2019 Miha Muškinja

Working example on Cori at NERSC

7

• Successfully tested the Raythena workflow on Cori Haswell and KNL nodes
at NERSC,

• Test jobs were ATLAS Geant4 simulation jobs that take ~few min. per event,
• Largest test that we tried so far:

- 60 Haswell nodes with 32 cores each,
- Processed 100k events in total and spawned merge jobs every 100 events

to form 1000 merged output files,
• No bottlenecks found so far in Ray.

05 November 2019 Miha Muškinja

Close-up — two AthenaMP instances on Haswell nodes

8

AthenaMP 
Initialization

Event 
Processing

Worker

Worker 
Initialization

Cori Haswell Nodes 
- 32 cores / node

wall time

https://www.nersc.gov/users/computational-systems/cori/configuration/cori-phase-i/

05 November 2019 Miha Muškinja

Close-up — two AthenaMP instances on KNL nodes

9

AthenaMP 
Initialization

Event 
Processing

Worker

Worker 
Initialization

Cori KNL Nodes 
- 68 cores / node

wall time

https://www.nersc.gov/users/computational-systems/cori/configuration/knl-processor-modes/

05 November 2019 Miha Muškinja

Large Haswell job example (60 AthenaMP instances, 100k events)

10

AthenaMP 
Initialization

Event 
Processing

Worker

Worker 
Initialization

Cori Haswell Nodes 
- 32 cores / node

Merging 
1000 merge jobs, 
100 events per job

Merge  
Job

wall time

https://www.nersc.gov/users/computational-systems/cori/configuration/cori-phase-i/

05 November 2019 Miha Muškinja

Raythena running scheme

11

$ sbatch —image mmuskinj/some-ray-image —module=cvmfs

 $ shifter ./ray_start_head.sh

$ srun shifter ./ray_start_other.sh &  
 

$ shifter ./run_raythena.sh

• Ray, Raythena, and Athena are all running in a container on all nodes,
• Can be ported to other HPCs without too much effort.

05 November 2019 Miha Muškinja

Raythena plans for Run 3

• We are working towards using Raythena as
the default job orchestrating application on
HPCs in Run 3,

• Raythena batch jobs will be spawned by
Harvester— an application connected to the
PanDA server,

• PanDA is the ATLAS Production and
Distributed Analysis system use for all
production job submission,

• More details given by Paul Nilsson today: 
https://indico.cern.ch/event/773049/
contributions/3473371/.

12

https://cds.cern.ch/record/2625435/

Raythena

https://github.com/HSF/harvester/wiki
https://indico.cern.ch/event/773049/contributions/3473371/
https://indico.cern.ch/event/773049/contributions/3473371/
https://cds.cern.ch/record/2625435/

05 November 2019 Miha Muškinja

Digging deeper into Athena / Gaudi

• The long-term project is to interface Athena/Gaudi algorithms directly to Ray for
a much finer control over scheduling the workload,

• This would replace the current event loop with Ray and enable scheduling of a
single event across several nodes,

• Data needed by the algorithms is provided by Ray’s Global Control Store (GCS),
• Maximize throughput by more efficient/tailored scheduling of algorithms to

computing resources (e.g., CPU vs GPU).

13

05 November 2019 Miha Muškinja

Summary

• We are exploring the applicability of a distributed execution framework (Ray)
for ATLAS workflows,

• We have demonstrated a stand-alone prototype of a Ray-based ATLAS Event
Service,
- Shown to be scalable on Cori Haswell and KNL nodes,
- Runs entirely from containers and is portable to other HPCs,
- Plan is to use it as the default intermediate layer between Harvester and

AthenaMP processes on compute nodes in Run 3 for large-scale production
jobs.

• Longer-term-plan is to divide the ATLAS workflow into base components
(Algorithms) and interface them directly to Ray.

14

BACKUPBACKUP

05 November 2019 Miha Muškinja

Ray documentation and tutorials

• Ray has a very rich documentation hosted on readthedocs:
- https://ray.readthedocs.io/en/latest/index.html,

• Hands-on tutorials with exercises available in form of jupyter notebooks,
• Since Feb 2019, Intel hosts an 8-week course about distributed AI computation

with Ray: https://software.intel.com/en-us/ai/courses/distributed-AI-ray.

16

https://ray.readthedocs.io/en/latest/index.html
https://software.intel.com/en-us/ai/courses/distributed-AI-ray
https://software.intel.com/en-us/ai/courses/distributed-AI-ray

05 November 2019 Miha Muškinja

Ray 101

• One driver application (running on any compute node) controls all nodes in a
cluster (HPC) that are connected via TCP to a redis server,

• Tasks are first scheduled locally (Local Scheduler) if resources are available,
otherwise they are scheduled globally via the Global Scheduler.

17

https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/

05 November 2019 Miha Muškinja

Ray Application Layer

• Ray maintains three types of processes:
- Driver: a process executing the user program,
- Worker: a stateless process that executes tasks invoked by the driver or

another worker. Workers are started automatically and execute tasks
serially without maintaining a local state,

18

- Actor: a stateful process that
executes only the method it
exposes. They execute
methods serially and each
method depends on the
state resulting from the
previous execution.

05 November 2019 Miha Muškinja

Ray Functions and Actors

• A Ray parallel application is constructed with python decorations:

19

@ray.remote
def simpleFunction(a, b):
 # wait for 5 seconds
 time.sleep(5)
 # return sum
 return a + b

@ray.remote
class Counter(object):
 def __init__(self):
 self.value = 0

 def increment(self):
 self.value += 1
 return self.value

Task executed at a worker Actor process

this returns immediately
r = simpleFunction.remote(2, 4)

this will be executed 
 # after 5 seconds
print(ray.get(r))

Driver application

