
Joshua Heneage Dawes University of Manchester, Manchester, UK

CERN, Geneva, Switzerland
joshua.dawes@cern.ch

Marta Han University of Zagreb, Zagreb, Croatia

CERN, Geneva, Switzerland

Giles Reger University of Manchester, Manchester, UK
Giovanni Franzoni CERN, Geneva, Switzerland

Andreas Pfeiffer CERN, Geneva, Switzerland

Analysis Tools for the VyPR Performance
Analysis Framework for Python

Computing in High Energy Physics, 2019

VYPR

mailto:joshua.dawes@cern.ch

Analysis by Specification

Description of
expected behaviour

of individual functions
written by developer

Instrumentation

Using state
and time

constraints.

To check behaviour, we
take measurements at runtime,
but we take as few as possible.

Asynchronous
monitoring

Efficient monitoring to
check whether the program

behaves as described.

2

Description by Example

Forall(
 s = changes('a')
).Check(
 lambda s : (
 timeBetween(s, s.next_call('f').result())._in([0, 1])
)
)

Select points of
interest at runtime

Defines the rule to check at each of
these points of interest

• Every time a changes, the time
between that change and the end of
the next call to f should be no more
than 1 second.

3

Instrumentation

4

Source Code of
Monitored Function

AST modification -
automatic

instrumentation

Compilation to
Python bytecode

Original file is kept but
renamed to force imports to use the

instrumented bytecode.

VyPR derives an augmented
control flow graph and uses this
to perform static analysis, which

allows conservative
instrumentation.

• Instrumentation is performed by
adding ASTs of instrumentation
code to the AST representation
of the program, and then
compiling to bytecode.

• For web services, VyPR’s current main
use case, instrumentation is performed
between deployment and service start.

Enough information to
check behaviour

Collecting Monitoring Data

5

Instrumented,
Monitored Service

VyPR Server

Relational Database

Monitoring results
go over HTTP Insertion API

Analysis API

• VyPR stores verdict data (did a certain
function satisfy a property at a certain
time? yes or no?) and explanation data that
we use to try to find out why we got a
certain result.

How does the data look?

6

Instrumented,
Monitored Service

Verdict Data

Explanation Data

Satisfaction/Violation

We record whether things went well, and when.

Which part of our description was
violated?

We record the constraint that was the first to tell us something
was wrong.

Variable values at key points

If we place constraints over function calls, we might care
about the values present before the call.

Program paths

We record the sequence of branches taken and map
observations to the previous satisfied branching condition.

Function call stack

We store enough information to be able to reconstruct the
call stack of all functions whose behaviour was described.

VyPR Analysis

Object-oriented library for Python.

Methods defined to make common tasks (that require
complex queries) straightforward.

Powerful internals currently help the discovery of root causes
using very little code.

Analysis library communicates with a central verdict server.

7

Determining Problematic Control-Flow with
VyPR’s Analysis Library

import VyPRAnalysis as analysis
import VyPRAnalysis.orm.operations as ops

analysis.set_config_file("VyPRAnalysis/config.json")

functions = analysis.list_functions()
f = functions[0]

verdicts = f.get_verdicts()
observations = [
 verdicts[0].get_observations()[0],
 verdicts[1].get_observations()[0]
]
obs_collection = ops.ObservationCollection(
 observations
)

path_collection = obs_collection.to_paths()
path_collection.show_critical_points_in_file(
 filename=“critical_points"
)

Get a list of observations that were
required to check the property

Fix a function and a property over that function

Connect to a verdict server

Determine the points in control-flow at
which paths leading to those

observations diverged.

8

Forall(c = calls('func')).\
Check(lambda c : (
 c.duration()._in([0, 0.01])
))

Sample Output

9

Critical points in code for satisfying paths:
46 g.usage.log("\tConnected to Destination Database.")
47
48 * if self.tag_in_destination:
49 g.usage.log("\tDestination Tag '%s' found." % […])

Critical points in code for violating paths:
46 g.usage.log("\tConnected to Destination Database.")
47
48 * if self.tag_in_destination:
49 g.usage.log("\tDestination Tag '%s' found." % […])

Forall(c = calls('func')).\
Check(lambda c : (
 c.duration()._in([0, 0.01])
))

10

A Web Application for Visual Analysis

Prototype stage

11

12

Application at CMS
2018 experiments with CMS’ release service for alignment and calibrations showed unexpected
performance drops.

J H Dawes, G Reger, G Franzoni, A Pfeiffer, G Govi. VyPR2: A Framework for Runtime Verification of Web Services. TACAS 19.

2019 experiments, with path analysis and state comparison, have shown:

1. The branch taken in one case (which depends on the data being uploaded) does not affect
the performance. This is a good performance characteristic to know about.

2. The time required to perform a check for existence of some input mostly depends on the size
of the input, with some fluctuation expected. This answers our question regarding for how
much network latency was responsible.

VyPR performs well, even with the heavier explanation mode enabled.

13

Goals

The work developers have to do to determine root causes of behaviour that
disagrees with what’s expected should be minimised.

Research for VyPR is aiming at removing as much developer involvement as
possible from the root cause determination process.

14

VYPR

Publicly available - cern.ch/vypr

We are looking for new contributors, collaborators and applications:

joshua.dawes@cern.ch

15

http://cern.ch/vypr
mailto:joshua.dawes@cern.ch

