

A Software Framework for FCC studies: Status and Plans

CHEP 2019, Adelaide, Australia

Nov 04, 2019 N A Tehrani, J C Villanueva, J Faltova, <u>G Ganis</u>, C Helsens, J Hrdinka, C Neubüser, L Pezzotti, M Selvaggi, V Volkl, A Zaborwska CERN

The FCC@CERN project

- Address main questions currently open in HEP
- Circular Collider of 97.75 km circumference
- FCC-ee: e⁺e⁻

- $\sqrt{s} \approx \{m_{z}, 2 \cdot m_{w}, 240, 2 \cdot m_{t}\}$ GeV
- Data taking period: *⇒* **2040-2055**
- FCC-hh: pp, e⁻p
 - ~100 TeV pp
 - Possibly e⁻p in parallel
 - Data taking period: *⇒* **2065-2090**

FCC Conceptual Design Report

- Used as input for ESPP 2019
- Using FCCSW based on
 - 150 TB of full simulated data
 - 100 TB of Delphes events

<u>https://cern.ch/fcc-cdr</u>

FCC Software Outlook

- Started in 2014, target the CDR
- Driving considerations
 - One software stack to support all the cases, all the detector concepts
 - Need to support broad range of event complexity (e⁺e⁻,pp,e⁻p)
 - Need to support physics and detector studies
 - Parametrised, fast and full simulation (and mixture of the three)
 - Allow for evolution
 - Component parts can be improved separately
 - Allow multi-paradigm for analysis
 - C++ and Python at the same level

FCC Software, CHEP2019

5

FCC Software Outlook

- Adopted Strategy
 - Adapt existing solutions from LHC
 - Look at ongoing common projects (AIDA)
 - Invest in streamlining of event data model
- Future: towards a common software for future experiments
 - Bologna workshop, June 2019
 - Present: LHC, ILC, CLIC, FCC, CEPC, SCTF, HSF
 - Agreed to:
 - Investigate the possibility to have a common event data model (EDM4hep)
 - Contribute to the development of a Common Turnkey Software Stack (Key4hep)
 - One framework (Gaudi best candidate), DD4hep, EDM4hep, Geant4, ROOT, ...

A Sailer, TX, Tue, 17h45

FCC Software current ingredients

Event Data Model and PODIO

- LHC experiments / LC studies solutions suffering (partly) from
 - Overly complex data models with deep object-hierarchies
 - Unfavorable I/O performance
- **PODIO**: an EDM toolkit (AIDA2020 project)
 - Plain Old Data, automatic code generation, support for different backends
 - Keep memory model simple, enabling fast I/O and efficient vectorization
 - Consistent / homogeneous implementation, minimizes mistakes
 - High-level description in YAML format

• Three-layers

F Gaede, T5

Thu, 11h45

- User: handles objects and collections
- Object: transient, relations between objects
- POD: actual data structures
- Follow-up for next AIDA being prepared
 - Schema evolution, memory and I/O optimizations

7

Detector Description: DD4hep

- Generic detector view appropriate to support
 - simulation, reconstruction, analysis, ...
- Design goals
 - Complete
 - Single source of information
 - Easy of use

- Part of AIDA2020
- Used by CLIC, ILC, FCC, LHCb, CMS, SCT

FCC Software, CHEP2019

9

DD4HEP and FCCSW

- FCC-hh
 - Reference detector complete

- FCC-ee
 - IDEA Concept
 - Beam Pipe, instrumentation
 - Vertex Detector, Drift Chamber
 - DREAM Calorimeter (under dev)
 - LAr+Tile calorimeter (under dev)
 - CLiCDP

Software Framework: Gaudi

- "The Gaudi project is a **open project for providing the necessary interfaces and services** for building HEP experiment frameworks in the domain of event data processing applications. The Gaudi framework is **experiment independent**."
- Data processing framework designed to manage experiment workflows
 - Separate data and algorithms; well defined interfaces
 - User's code encapsulated in Algorithm's, Tool's / Interface's, Service's
 - Different persistent and transient views of data
 - C++, with Python configuration
- Originating from LHCb, adopted by ATLAS, Daya Bay, GLAST, LZ, ...
- Actively developed to face LHC Run 3 and Run 4 challenges (high PU)

Gaudi and FCCSW

FCC Software, CHEP2019

Monte Carlo Generation

- Interoperability with (Monte Carlo) generators at
 - Level 0 common data formats
 - E.g. HepMC, Les Houches Event Files, MDI
 - Level 1 callable interfaces
 - E.g. Pythia8
- Pythia8 also acts as LHEF event reader
 - Other converters available (HepMC, HepStd)
- Generator repository: GenSer @ LCG Stacks
 - Available in FCCSW
- MDI codes (MDISim, GuineaPig, ...) use level 0 interoperability
 - Adhoc converters under discussion

FCC Software, CHEP2019

13

Simulation

- Geant4
 - Gaudi components exists to create
 - User Actions
 - Regions
 - Sensitive detectors
 - Selective output options
 - Mixing fast and full G4 simulation possible
 - SimG4Full / SimG4Fast
- Delphes
 - Gaudi interface
 - EDM output

Fast / Full Simulation Interplay

FCC Software, CHEP2019

Reconstruction

- Challenges: algorithm detector concept independent
 - Fully flexibility, avoid duplication
- Tracking
 - Track seeding (TrickTrack)
 - Hough Transform for drift chambers
 - Under implementation / investigation
 - ACTS integration
 - Conformal tracking
- Calorimeters
 - Sliding window (rectangular/ellipse)
 - Topo-clustering

Analysis considerations

- HEPPY: High Energy Physics with PYthon
 - Modular python framework for the analysis of collision events
- Developed and still used for CMS
- In FCC is used to
 - Process EDM events, apply-preselection, produce a flat and light ROOT ntuple
 - Analyse the ROOT ntuple
 - Not the only code used for this purpose
- Flexible but slow
 - Plan to move to a C++-based analysis framework, e.g. RDataFrame

Software Infrastructure

- Typical HEP development workflow
- Deliverables
 - FCCSW
 - Externals: FCCSW specific dependencies
 - Based on LCG releases

FCCSW - Main package

FCC externals fcc-edm fcc-physics tricktrack heppy podio ...

LCG release Gaudi dd4hep ROOT ...

- Deployment on dedicated CernVM-FS repositories /cvmfs/fcc.cern.ch, /cvmfs/fcc-nightlies.cern.ch
- Builds (nightlies, releases) managed by **Spack**
 - \circ $\,$ Good feedback to HSF packaging WG $\,$

G Stewart, T5, Tue, 14h00

About the after-CDR for FCCSW

- Requirements:
 - Support more detailed studies, in particular for e+e-, focusing on
 - Completeness: state-of-Art generators, MDI, reconstruction / analysis algorithms, ...
 - Flexible detector description: easy switch / replace sub-detectors, change dimensions / layout
- **Current approach** seems **adequate** to fulfill the requirements
- Foster and support
 - Participation from FCC institutes worldwide
 - Activities such as Key4HEP, which formalize and extended the FCCSW approach

Connection with Key4hep

FCCSW	Key4hep TENTATIVE					
Specific	Detector Description		Evt/Bkg Gen Simulation		Reconstruction Analysis	
Specific detector eg FCC-hh Specific algorithms	IDEA CLICDP 	Sil. Track. TPC DREAM 	Pythia8 MadGraph GuineaPig MDISim 	G4 Full G4 Fast Delphes 	TrickTrack ACTS Conf. Track. 	RDF PyHEP
Specific	DD4hep		Gaudi			ROOT
effects eg Pile-Up	EDM4hep					
	Workload and Data Management					
	Key4hep Software Infrastructure					
FCC Software Infrastructure						

Summary

- The FCC software stack assembled using as much as possible existing components
- Served well the purposes of the CDRs
- Started a new phase to further develop to support more detailed studies, in particular for e+e-
- Follow closely, participate and collaborate new common activities {Key4hep, EDM4hep}

Thank you!

https://cern.ch/fccsw

Backup

FCC Software, CHEP2019

Gaudi and FCCSW

• Python scripts to configure tools and algorithms and define their processing order

\$ fccrun \
./Examples/options/geant_fullsim_fccee_pgun.py \
job d
--energyMin=10 --energyMax=10 --particleName="mu-" \
param
--n=1000 --filename=fccee_idea_mu.root

Generic Gaudi app# job definition# parameters

• Each algorithm defines its parameters which can be overwritten of the command line

Calo Reconstruction Example

• Single 100 GeV e- reconstructed by sliding window

• Single 100 GeV pion in 8+10 layers of the E+HCal reconstructed by topo-cluster

