
Modernizing the CMS software stack

Mircho Rodozov
On behalf of the CMS collaboration

Outline

➢ Introduction

➢ CMS Software stack
○ How big/complex is our stack

➢ Modernizing our stack
○ Python2-3 support
○ Code formatting

➢ CI/CD improvements & “exotic” experiments
○ Heterogeneous computing
○ Managing CI for 120+ github repositories
○ CI resources utilization

Modernizing the CMS software stack
2

Introduction

➢ We are:

○ Core software @ CMS
○ Build releases, Integration builds (IBs), externals, test & deploy them
○ Continuous integration / delivery (CI/CD) system
○ Maintaining CI/CD infrastructure

Modernizing the CMS software stack 3

CMS Software stack size
➢ Size of CMS Offline Software (CMSSW)

○ Over 4.5 M lines of code
■ 3.2 M C/C++ 1.4 M Python, 275k Fortran

○ Packages - 1300+
○ Multiple versions (10+ release flavors)

➢ Dependency on external packages
○ 500+, from source
○ custom build system (cmsBuild)

➢ Contributions
○ 200+ commits/week

■ 160+ github pull requests (PRs)
○ 800+ contributors

➢ 200+ GitHub repositories for CMSSW and externals

Modernizing the CMS software stack 4

Software Distribution rate
➢ Release builds

○ Every two weeks
○ via github issues

➢ Integration Builds
○ ~450/month

➢ Complexity

➢ Extensive validation of IBs
○ 4000+ tests

Modernizing the CMS software stack 5

CI setup

submit PR

Modernizing the CMS software stack 6

Code format

➢ Clang format and clang tidy
○ Formatted 3.2 M lines
○ Collision with open PRs avoided
○ Style used: Google
○ Rules enforced via PR testing

➢ Automated transition

Clang format

Clang tidy

Modernizing the CMS software stack 7

Modernizing python

➢ 1.2 M lines converted to be py3 compatible

➢ Migration completed
○ Made it compatible while running py2
○ Works with both

➢ Mostly a manual job
○ Limited number of cases
○ Some conversion tools exist (futurize, autopep)

Modernizing the CMS software stack 8

Python packaging upgrade

➢ Integrated 200+ python externals
○ Build from sources using pip

➢ Simplified format
○ one line update
○ py2 and py3 recipes unified

➢ Customization for the new packages
○ a package can have patch
○ build only for py2 or py3 if required
○ conditionally build

■ python version
■ architecture

After

Before

Modernizing the CMS software stack 9

Validating externals

➢ Integration tests for externals

○ Does it integrates (build + link against the IB)
○ Does it run

➢ Physics validation
○ Comparison with reference

Modernizing the CMS software stack 10

Testing multiple PRs

➢ Testing 200+ different repos (CMSSW, externals, data)

➢ Testing multiple PRs from different repos at once

➢ Convenient for testing pull requests that need external update

Modernizing the CMS software stack 11

➢ ARM
○ Cavium ThunderX 96 cores
○ Cavium ThunderX2 128 cores

➢ PowePC
○ Power 8
○ 1 Wistron 256 core

➢ GPUs
○ Shared Nvidia Tesla K20X
○ HTCondor GPUs resources

■ as Jenkins nodes
■ released on job completion
■ Thanks to IT-CM for adding a short

queue to access these nodes for us !

CMSSW on heterogeneous
resources

Modernizing the CMS software stack 12

CI resources utilization

➢ We run our own scheduler for CI validations

➢ Heuristics based, 20 to 25% faster

➢ https://tinyurl.com/yywh2py7

Modernizing the CMS software stack 13

https://tinyurl.com/yywh2py7

Conclusions

➢ CMS improves it’s code base continuously

➢ Keep improving our CI/CD system

➢ Embraced modern code policies

➢ Migrated python

➢ Successfully running CI and tests on non Intel architectures

➢ Put some effort for better utilization of the CI resources

Modernizing the CMS software stack 14

