CLARA’s adaptive workflow management system

Reactive micro-services based data processing orchestration.

V. Gyurjyan

gurjyan@jlab.org
Will address

• Heterogeneous data-processing optimization with CLARA's adaptive workload orchestration

• NUMA-aware workflow management system
Outline

- Problem statement
- Micro-services vs Monolithic architecture
- Flow-based programming paradigm
 - Passive vs Reactive programming
 - Event vs message driven communication
- CLARA reactive micro-services based data-stream processing framework.
- Framework level workflow orchestration
- Data-processing performance optimization across diverse hardware and software infrastructures.
JLAB CLAS12

• Thomas Jefferson National Accelerator Facility (TJNAF), commonly known as Jefferson Lab or JLab, is a U.S. national laboratory located in Newport News, Virginia.
• Superconducting RF technology based accelerator provides 12 GeV continuous electron beam with a bunch length of less than 1 picosecond.
• Nuclear physics experiments in 4 end-stations (A,B,C,D).
• CLAS12 is a large acceptance spectrometer installed in Hall B to study:
 • Quark-gluon interactions with nuclei
 • Nucleon-nucleon correlations
 • Nucleon quark structure imaging,
 • etc.
Problem we face

Expected Data Rates
Jefferson Lab

Gbyte/s

<table>
<thead>
<tr>
<th></th>
<th>CLAS12</th>
<th>GlueX</th>
<th>TDIS</th>
<th>SoLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>30</td>
</tr>
</tbody>
</table>

Global Digital Data

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exabyte</td>
<td></td>
</tr>
</tbody>
</table>

CPU Resources [KHS06^1000]

- **Flat budget model (+20%/year)**

Year

Run 2

Run 3

Run 4
CPU based architecture limitations

Memory Latency

Today’s computers now take much longer to fetch or store than to add and multiply.

MIPS/clock speed plateau
Squeezing more cores per chip becomes difficult

von Neumann Bottleneck

Central Processing Unit
- Control Unit
- Arithmetic/Logic Unit
- Memory Unit

Input Device
Output Device

FPGA Performance (GMACs)
CPU Performance (GFLOPs)
Only CPU based parallelism is not enough

“Frameworks face the challenge of handling the massive parallelism and heterogeneity that will be present in future computing facilities, including multi-core and many-core systems, GPUs, Tensor Processing Units (TPUs), and tiered memory systems, each integrated with storage and high-speed network interconnections.”

“Enable full offline analysis chains to be ported into real-time, and develop frameworks that allow non-expert offline analysis to design and deploy physics data processing systems.”

A Roadmap for HEP Software and Computing R&D for the 2020s. HEP Software Foundation, Feb. 2018
The Scale-Cube

Scale by splitting similar things, such as events, on the Y-axis. Scale by vertically splitting or multi-threading. Scale by clamping different things, such as by function, on the X-axis. Scale by splitting similar things, such as by events, on the Z-axis. Microservices and horizontal scaling.

Micro-services vs Monolithic architecture

Pros
- Strong coupling, thus better performance
- Full control of your application

Cons
- No agility for isolating, compartmentalizing and decoupling data processing functionalities, suitable to run on diverse hardware/software infrastructures
- No agility for rapid development or scalability

Pros
- Technology independent
- Fast iterations
- Small teams
- Fault isolation
- Scalable

Cons
- Complexity networking (distributed system)
- Requires administration and real-time orchestration
What is micro about a service?
Passive vs Reactive

Passive programming
- **S1**: Proactive, responsible for change in **S2**
- **S2**: Passive, unaware of the dependency

Reactive programming
- **S1**: Broadcasts its own result
- **S2**: Subscribes **S1** change events and changes itself

Enables event driven stream processing

Feedback to control backpressure
Event-Driven vs Message-Driven

Event Driven
- S1 event broadcasting

Message Driven
- S1 message has a clear destination
CLARA Framework

Reactive, event-driven data-stream processing framework that implements micro-services architecture and FBP

- Defines streaming transient-data structure
- Provides service abstraction (data processing station) to present user algorithm (engine) as an independent service.
- Defines service communication channel (data-stream pipe) outside of the user engine.
- Stream-unit level workflow management system and API
- Supports C++, JAVA, Python languages

http://claraweb.jlab.org
https://claraweb.jlab.org/clara/docs/clas/hands-on.html
Basic components and a user code interface

Data Processing Station

Data-Stream Pipe

Orchestrator

Data processing Engine

Data Processing Station

Data Processing Micro-Service

Engine Tutorials
- https://claraweb.jlab.org/clara/docs/quickstart/java.html
- https://claraweb.jlab.org/clara/docs/quickstart/cpp.html
- https://claraweb.jlab.org/clara/docs/quickstart/python.html
Data Processing Station

Runtime Environment

Multi-threading

Communication

Data Processing Station

Configuration

Language Bindings
- https://github.com/JeffersonLab/clara-java.git
- https://github.com/JeffersonLab/clara-cpp.git
- https://github.com/JeffersonLab/clara-python.git
Data Stream Pipe

Communication

Language Bindings

- https://github.com/JeffersonLab/xmsg-java.git
- https://github.com/JeffersonLab/xmsg-cpp.git
- https://github.com/JeffersonLab/xmsg-python.git
Structure

Orchestration Layer

Service Layer

Meta-Data

Data

ZeroMQ(xMsg)

POSIX Shared Memory (FIPC)

in-Memory Data-Grid
Transient data unit (meta-data + data)
CLAS12 Data Processing Applications
Event Reconstruction Application (sub-event level parallelization)
Workflow orchestrator

Application Monitoring, Real-time Benchmarking

Application Deployment and Execution

Exception Logging and Reporting

Command-Line Interface

Hardware Optimizations

Service Registration/Discovery

Data-Set Handling and Distribution

Farm (batch or cloud) Interface
Heterogeneous deployment algorithm

\[
P_g = \frac{\sum_{i=1}^{t_i} CR_{FTOF}(t_i)}{\sum_{i=1}^{t_i} CR_{DCHB_GPU}(t_i)}
\]

\[
P_c = \frac{\sum_{i=1}^{t_i} CR_{FTOF}(t_i)}{\sum_{i=1}^{t_i} CR_{DCHB_CPU}(t_i)}
\]

If \(P_g < P_c \), route data-stream through DCHBg
Data-quantum size and GPU occupancy

In Process SHM
Farm Node

C++-DPE
DCHBg

In-Memory Data-Grid
set data-quantum size

In-Process SHM
Java-DPE

FTOF
EC
Thread motion and DVFS

- Per-core, independent voltage control becomes impractical
- Limited number of independent DVFS systems for multicore systems
- Large core density systems are deploying a new power management technique that migrates threads from core to core to adjust power and performance to the time-varying needs of a running program.
Data-processing chain per NUMA

Start DPE pinned to a NUMA socket.

In-Process SHM

NUMA 0

NUMA 1

Java-DPE

Back pressure control
Results

Rate vs. Threads for a Single NUMA Socket

CLAS12 Reconstruction Application: v. 5.9.0, Data File: clas_004013.hipo, NUMA 0

- AMD EPYC 7502: 1.5MHz, 128/128, NUMA-2
- Xeon E-2687A: 2.6GHz, 32/32, NUMA-2
- Xeon Gold 6148: 2.4GHz, 40/40, NUMA-4

CLAS12 Reconstruction Application Vertical Scaling

Data File: clas_005038.evio.00130.hipo
Node: Intel Xeon E5-2697A v4 @ 2.6GHz
Clara: v 4.3.11
Plugin 1: coatjava-6.3.1
Plugin 2: grapes-2.1

Amdahl's Law Curve Fit

- Calculated Speedup
- Amdahl's Law Speedup

99.5% parallel efficiency over physical cores
Summary

• Frameworks based on the micro-services architecture are in a better position to address massive parallelism and heterogeneity of current and future computing facilities.

• CLARA is a mature, micro-services based, data stream processing framework in production-use at JLAB and NASA.

• Internal, stream-unit level workflow management system is designed with adaptive functionalities that guarantees maximum data processing performance across diverse hardware and software infrastructures.