Gentoo Prefix as a Physics Software Manager

Benda Xu (Tsinghua University), Guilherme Amadio (CERN), Fabian Groffen (Gentoo), Michael Haubenwallner (Gentoo)

https://www.gentoo.org

Nov. 5, 2019 CHEP’19 Adelaide
Sophisticated Analysis and Simulation

- Data analysis and detector simulation advance fast.
- Physics software stack is getting deeper.

Example (Pythia physics event generator)
Bundling dependencies all together is not elegant.
 ▶ Modularity is crucial for maintainability.

Package manager is the industry standard to solve this.
 ▶ It is invented by GNU/Linux distributions.

 the single biggest advancement Linux has brought to the industry.
Brace the Complexity

- Bundling dependencies all together is not elegant.
 - Modularity is crucial for maintainability.
- Package manager is the industry standard to solve this.
 - It is invented by GNU/Linux distributions.

 the single biggest advancement Linux has brought to the industry.

- Every GNU/Linux distribution has its package manager.

Example (Install the Z Shell)

```
apt install zsh  #Debian
dnf install zsh   #Redhat
pacman -S zsh     #Archlinux
zypper install zsh #SUSE
emerge zsh         #Gentoo
```
Characteristics of Gentoo

- Full GNU/Linux distribution (2000–)
 - General purpose: from daily to scientific use cases.
 - Portability: x86, amd64, sparc, arm/64, alpha, mips, riscv, …
 - Meta-distribution: ultimate flexibility for specific needs.

Benda Xu (Gentoo)
Gentoo Prefix as a Physics Software Manager
Nov. 5, 2019 CHEP’19 Adelaide
Characteristics of Gentoo

- **Full GNU/Linux distribution (2000–)**
 - General purpose: from daily to scientific use cases.
 - Portability: x86, amd64, sparc, arm/64, alpha, mips, riscv, …
 - Meta-distribution: ultimate flexibility for specific needs.

- **Community driven: spontaneous and distributed development.**
 - Packages, like the build recipe of Pythia, are shared pieces of wisdom of the community.

Example (`emerge -t pythia`)

- `[ebuild N] sci-physics/pythia-8.2.26:8::gentoo`
- `[ebuild N] sci-physics/hepmc-2.06.09-r1::gentoo`
- `[ebuild N] sci-physics/lhapdf-6.2.3::gentoo`
- `[ebuild N] dev-libs/boost-1.71.0:0/1.71.0::gentoo`
- `[ebuild U] dev-util/boost-build-1.71.0::gentoo`
- `[ebuild N] sci-physics/fastjet-3.0.6-r1::gentoo`
- `[ebuild N] sci-physics/siscone-3.0.3::gentoo`
Characteristics of Gentoo

- Full GNU/Linux distribution (2000–)
 - General purpose: from daily to scientific use cases.
 - Portability: x86, amd64, sparc, arm/64, alpha, mips, riscv, ...
 - Meta-distribution: ultimate flexibility for specific needs.

- Community driven: spontaneous and distributed development.
 - Packages, like the build recipe of Pythia, are shared pieces of wisdom of the community.

Example (emerge -t pythia)

```
[ebuild N ] sci-physics/pythia-8.2.26:8::gentoo
[ebuild N ] sci-physics/hepmc-2.06.09-r1::gentoo
[ebuild N ] sci-physics/lhapdf-6.2.3::gentoo
[ebuild N ] dev-libs/boost-1.71.0:0/1.71.0::gentoo
[ebuild U ] dev-util/boost-build-1.71.0::gentoo
[ebuild N ] sci-physics/fastjet-3.0.6-r1::gentoo
[ebuild N ] sci-physics/siscone-3.0.3::gentoo
```
Gentoo Package Manager for Physics

Gentoo Prefix installs a complete Gentoo userspace into a directory, called `${EPREFIX}`.

- Try it: download and run the bootstrap script

```bash
wget https://goo.gl/czXbjP -O bootstrap.sh
chmod +x bootstrap.sh
./bootstrap.sh
```

- Bootstrap has 3 Stages:
 1. Compile python and portage in `${EPREFIX}/tmp`.
 2. Install gcc in `${EPREFIX}/tmp` by portage.
 3. Build Gentoo in `${EPREFIX}` by portage and Stage 2 gcc.

1https://wiki.gentoo.org/wiki/Project:Prefix

Benda Xu (Gentoo)
Gentoo Prefix as a Physics Software Manager
Nov. 5, 2019 CHEP’19 Adelaide
Full GNU Userspace of Gentoo Prefix:

$ tree -L 1 -d

cvmfs/gentoo
|-- bin
| -- etc
| -- lib
| -- lib64
| -- run
| -- sbin
| -- tmp
| -- usr
`-- var

- ELF Program Headers INTERP points to dynamic loader in
 \($\mathtt{EPREFIX}\). Dynamic loader use libraries from \($\mathtt{EPREFIX}/lib\), etc.

\$ ldd `which cp`
 linux-vdso.so.1 (0x00007ffe245e2000)
 libacl.so.1 => /cvmfs/gentoo/usr/lib64/libacl.so.1 (0x00007f0f7ec29000)
 libc.so.6 => /cvmfs/gentoo/lib64/libc.so.6 (0x00007f0f7ea59000)
 /cvmfs/gentoo/lib64/ld-linux-x86-64.so.2 (0x00007f0f7ec59000)
$ tree -L 1 -d

/cvmfs/gentoo
|-- bin
|-- etc
|-- lib
|-- lib64
|-- run
|-- sbin
|-- tmp
|-- usr
`-- var

- ELF Program Headers INTERP points to dynamic loader in
 ${EPREFIX}. Dynamic loader use libraries from ${EPREFIX}/lib, etc.

 $ ldd `which cp`
 linux-vdso.so.1 (0x00007ffe245e2000)
 libacl.so.1 => /cvmfs/gentoo/usr/lib64/libacl.so.1 (0x00007f0f7ec29000)
 libc.so.6 => /cvmfs/gentoo/lib64/libc.so.6 (0x00007f0f7ea59000)
 /cvmfs/gentoo/lib64/ld-linux-x86-64.so.2 (0x00007f0f7ec59000)

- Gentoo Prefix is a self-contained userspace,
 - Neither LD_LIBRARY_PATH nor ELF DT_RPATH is needed.
 - One Prefix runs on all: best distributed via cvmfs to
 heterogeneous GNU/Linux hosts, like CentOS, Ubuntu.
Full GNU Userspace of Gentoo Prefix:

- ELF Program Headers INTERP points to dynamic loader in
 `$EPREFIX`. Dynamic loader use libraries from `$EPREFIX/lib`, etc.

```
$ ldd `which cp`
linux-vdso.so.1 (0x00007ffe245e2000)
libacl.so.1 => /cvmfs/gentoo/usr/lib64/libacl.so.1 (0x00007f0f7ec29000)
libc.so.6 => /cvmfs/gentoo/lib64/libc.so.6 (0x00007f0f7ea59000)
/cvmfs/gentoo/lib64/ld-linux-x86-64.so.2 (0x00007f0f7ec59000)
```

- Gentoo Prefix is a self-contained userspace,
 - Neither `LD_LIBRARY_PATH` nor ELF `DT_RPATH` is needed.
 - One Prefix runs on all: best distributed via `cvmfs` to
 heterogeneous GNU/Linux hosts, like CentOS, Ubuntu.

- At the same time, it shares the global filesystem view, as opposed
 to filesystem namespaces/containers.
Inside Gentoo Prefix

- autotools-based build systems

  ```
  ./configure --prefix="${EPREFIX}" ...
  ```

- CMake-based build systems

  ```
  cmake -DCMAKE_INSTALL_PREFIX="${EPREFIX}" ...
  ```

- Python, Perl, R, Haskell packages inherit language interpreter directory prefix.

- Toolchain

 - `gcc`, `binutils` sysroot=${EPREFIX}, search for headers and libraries in EPREFIX.

 - `gcc` inject EPREFIX dynamic loader.

 - `glibc` look for configurations in EPREFIX/etc.

- Reference:

 `https://goo.gl/wQEkhE`

Benda Xu (Gentoo)

Gentoo Prefix as a Physics Software Manager

Nov. 5, 2019 CHEP'19 Adelaide
Inside Gentoo Prefix

- autotools-based build systems

 .configure --prefix="${EPREFIX}" ...

- CMake-based build systems

 cmake -DCMAKE_INSTALL_PREFIX="${EPREFIX}" ...

Reference: https://goo.gl/wQEkhE
Inside Gentoo Prefix

- autotools-based build systems

  ```
  ./configure --prefix="${EPREFIX}" ...
  ```

- CMake-based build systems

  ```
  cmake -DCMAKE_INSTALL_PREFIX="${EPREFIX}" ...
  ```

- Python, Perl, R, Haskell packages
 inherit language interpreter directory prefix.

Reference: https://goo.gl/wQEkhE
Inside Gentoo Prefix

- autotools-based build systems

  ```
  ./configure --prefix="${EPREFIX}" ...
  ```

- CMake-based build systems

  ```
  cmake -DCMAKE_INSTALL_PREFIX="${EPREFIX}" ...
  ```

- Python, Perl, R, Haskell packages
 inherit language interpreter directory prefix.

- Toolchain

  ```
  gcc, binutils  sysroot=${EPREFIX}, search for headers and libraries in EPREFIX.
  
  gcc  inject EPREFIX dynamic loader.
  
  glibc  look for configurations in EPREFIX/etc.
  ```

 Reference: https://goo.gl/wQEkhE
Thanks to the flexibility of portage, other package formats can be straightforwardly converted into ebuilds. A few examples:

- **R CRAN** Gentoo R-Overlay
- **Python PyPI** Gentoo PyPI ebuild generator
- **Emacs ELPA** Gentoo ELPA ebuild generator
- **Octave Forge** Gentoo Octave overlay
- **Java Maven** Gentoo Maven overlay (on-going)
- **Rust Cargo** Gentoo Cargo ebuild generator (on-going)

Do not exist, you are welcomed to try :)

- **Julia Pkg** Gentoo Julia overlay...
Packages in Gentoo

- Big official package repository. cf. https://packages.gentoo.org
 /var/db/pkg $ ls -1 | grep ^sci
 sci-astronomy
 sci-biology
 sci-calculators
 sci-chemistry
 sci-electronics
 sci-geosciences
 sci-mathematics
 sci-physics
 sci-visualization

- R Overlay: 18993 packages, e.g. emerge ggplot2

- You can do anything on supercomputers:
 - Install the latest KDE (K Desktop Environment) suite.
 - Install your own slurm by Gentoo to distribute jobs.

- Life on the supercomputers made easier.
Case Study 1: Stone-Aged Computing Cluster

- Default environment is RHEL (Redhat Enterprise Linux) 5.

<table>
<thead>
<tr>
<th>RHEL</th>
<th>Release</th>
<th>End of Security Updates</th>
<th>Lastest Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2007-03-15</td>
<td>2017-03-31</td>
<td>5.11</td>
</tr>
<tr>
<td>6</td>
<td>2010-11-10</td>
<td>2020-11-30</td>
<td>6.10</td>
</tr>
<tr>
<td>7</td>
<td>2014-06-10</td>
<td>2024-06-30</td>
<td>7.7</td>
</tr>
<tr>
<td>8</td>
<td>2019-05-07</td>
<td>2029-05-??</td>
<td>8.0</td>
</tr>
</tbody>
</table>

$ cat /etc/redhat-release

Red Hat Enterprise Linux Server release 5.5 (Tikanga)

$ python -c "import sys; print sys.version"

2.4.3 (#1, Jun 11 2009, 14:09:37)

[GCC 4.1.2 20080704 (Red Hat 4.1.2-44)]

$ ld --version

GNU ld version 2.17.50.0.6-14.el5 20061020

Copyright 2005 Free Software Foundation, Inc.

$ ldd --version

ldd (GNU libc) 2.5

Copyright (C) 2006 Free Software Foundation, Inc.
Case Study 1: Stone-Aged Computing Cluster

- Default environment is RHEL (Redhat Enterprise Linux) 5.

<table>
<thead>
<tr>
<th>RHEL</th>
<th>Release</th>
<th>End of Security Updates</th>
<th>Lastest Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2007-03-15</td>
<td>2017-03-31</td>
<td>5.11</td>
</tr>
<tr>
<td>6</td>
<td>2010-11-10</td>
<td>2020-11-30</td>
<td>6.10</td>
</tr>
<tr>
<td>7</td>
<td>2014-06-10</td>
<td>2024-06-30</td>
<td>7.7</td>
</tr>
<tr>
<td>8</td>
<td>2019-05-07</td>
<td>2029-05-??</td>
<td>8.0</td>
</tr>
</tbody>
</table>

$ cat /etc/redhat-release
Red Hat Enterprise Linux Server release 5.5 (Tikanga)

$ python -c "import sys; print sys.version"
2.4.3 (#1, Jun 11 2009, 14:09:37)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-44)]

$ ld --version
GNU ld version 2.17.50.0.6-14.el5 20061020
Copyright 2005 Free Software Foundation, Inc.

$ ldd --version
ldd (GNU libc) 2.5
Copyright (C) 2006 Free Software Foundation, Inc.
Case Study 1: Short Cut to Modern Age

- **Gentoo Prefix**: no restriction by the host OS:
 - **Python**

    ```bash
    $ python -c "import sys;print(sys.version)"
    3.6.6 (default, Aug 31 2018, 03:10:49)
    [GCC 8.2.0]
    ```
 - **Linker**

    ```bash
    $ ld --version
    GNU ld (Gentoo 2.30 p1) 2.30.0
    Copyright (C) 2018 Free Software Foundation, Inc.
    ```
 - **Dynamic loader**

    ```bash
    $ ldd --version
    ldd (Gentoo 2.19-r1 p3) 2.19
    Copyright (C) 2014 Free Software Foundation, Inc.
    ```

 `glibc-2.19` is the last glibc supporting `linux-2.6.18` of RHEL 5.
Case Study 2: Simultaneous Multiple Versions

- Stacked-Prefix can make thin instances based on a common one.

Example (Legacy of experimental physics)

- Coexistence of software suites to satisfy diverse requirements of varied scenarios.
- Quick deployment of arbitrary testing environments.
- Keeping Filesystem Hierarchy Standard (FHS) without needing containers.
Be an early adopter of arm64 supercomputing.

Works on all known rooted android devices.

Case Study Bonus

Gentoo on Android

- Be an early adopter of arm64 supercomputing.

Example (CERN)

- Managed as LCG releases

 $ /cvmfs/sft.cern.ch/lcg/contrib/gentoo/startprefix

Example (JUNO@IHEP)

- On lxslc7 login nodes

 $ /workfs/juno/xubd/gentoo/startprefix

- inode quota is not enough, and it is mounted by squashfs, unionfs and FUSE.
Conclusion

- Gentoo (1999–) has been the paradise for geek users and developers for decades.
 - From the community, but share the mindset of scientists.
- Gentoo portage is a feasible package manager for high energy physics.
 - It meets all the needs of us, and is especially good on cvmfs.
- The physics use case of Gentoo is a **natural consequence** of its flexibility and expertise in building operating systems.
 - Sustenable free ride on the developments outside science.

More information

- Homepage: http://hep.tsinghua.edu.cn/~orv
 <heroxbd AT gentoo.com>
 <orv AT tsinghua.edu.cn>

Ebuild Example: ROOT

- Gentoo Ebuilds are written in carefully organized bash.
- https://packages.gentoo.org/packages/sci-physics/root

```bash
# Copyright 1999-2019 Gentoo Authors
# Distributed under the terms of the GNU General Public License v2

EAPI=6

# ninja does not work due to fortran
CMAKE_MAKEFILE_GENERATOR=emake
FORTRAN_NEEDED="fortran"
PYTHON_COMPAT=( python2_7 python3_5 python3_6 )

inherit cmake-utils eapi7-ver elisp-common eutils fortran-2 \
    prefix python-single-r1 toolchain-funcs

DESCRIPTION="C++ data analysis framework and interpreter from CERN"
HOMEPAGE="https://root.cern"
SRC_URI="https://root.cern/download/${PN}_v${PV}.source.tar.gz"
```

Benda Xu (Gentoo)