
GPU-based Clustering Algorithm for the CMS High
Granularity Calorimeter

*Z. Chen[1], A. Di Pilato[2], F. Pantaleo[3], M. Rovere[3]

On behalf of the CMS Collaboration

[1] Northwestern University, [2] University of Bari & INFN, [3] CERN

The 24th International Conference on Computing in High Energy and Nuclear Physics
CHEP2019, Adelaide, Australia. Nov 04 - 08, 2019

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 1

Luminosity Forecast
v After 2026, HL-LHC will deliver

ultimate luminosity up-to 7.5×
10'(𝑐𝑚+,𝑠+. and produce high
pileup events up-to PU200. [1]

v Current CMS endcap calorimeters
(ECAL and HCAL) are designed for a
500/fb lifetime integrated luminosity.[2]

They need to be upgraded during
CMS phase-II upgrade in LS3 before
reaching their radiation limit.

Ultimate HL-LHC Schedules and
Luminosity Forecasts [1]

now

HL-LHC

Designed limit of current endcap
L=500/fb current

endcap

[1] https://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/HL-LHC-plots.htm
[2] CMS Collaboration, “Technical Proposal for the Phase-II Upgrade of the Compact Muon Solenoid”, Technical Report CERN-LHCC-2015-010, LHCC-P-008, 2015.

CMS
Phase1
upgrade

CMS
Phase2
upgrade

https://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/HL-LHC-plots.htm

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 2

CMS High Granularity Calorimeter
v Current CMS endcap ECAL and HCAL calorimeters will be replaced by High Granularity Calorimeter

(HGCAL), a sampling calorimeter system based on Si sensors and plastic scintillators, during CMS phase-II
upgrade.

• Full system operates at −35℃ maintained by a CO2 cooling system
• Covers 1.5 < 𝜂 < 3.0 on both left and right sides
• Total size z=2m, r = 2.3m. Total weight 215 ton per endcap
• 620 m2 of Silicon sensors (120/200/300 um). 0.5-1.0 cm2 à 6M channels
• 400 m2 of plastic scintillators with SiPM readout. 4-30 cm2 à 240k channels.

CE-E CE-H
Number of layers 28 layer/endcap 8+14 layer/endcap

Sensor type Si Si, Scintillator

Absorber type Cu, CuW, Pb Stainless Steel, Cu

Thickness 25𝑋6, 1.3λ ~9.5λ

• Plots from “The Phase-2 Upgrade of the CMS endcap
calorimeter Technical Design Report”
http://cds.cern.ch/record/2293646/files/

Full Si layers

Full Si layers and Si/Scint mixed layers

http://cds.cern.ch/record/2293646/files/

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 3

Challenge of Computing v CMS uses two-level trigger system, L1 Trigger and High Level Trigger
(HLT), to reduce data rate from 400 MHz (LHC) à 100 kHz (CMS L1T
output rate) à1 kHz (HLT output rate)

• L1 Trigger: based on ASICs and FPGAs. Make decision in 4 us.
• HLT: based on CPUs. Make decision in 300 ms.

v HLT in era of HL-LHC expects 30x more computing load
• 4x from increased event complexity: upgraded detectors (~1.3x), higher pile-up (~3x)
• 7.5x from increased event rate: L1 output rate 100 kHz à 750 kHz.

v Within 30x increased computing load, increase of CPU performance can
account for only 4x. CPU alone is not enough to handle this computing
challenge.

v It is particularly a huge challenge for HGCAL reconstruction to achieve
the HLT time budget (< 20-50 ms *) for PU200 events in HL-LHC.

v GPU could be a solution. CUDA, an application programming interface
(API) for General-Purpose computing on Graphics Processing Units
(GPGPU), makes it possible to accelerate HGCAL and other HLT
reconstruction with GPUs.

C
om

pu
tin

g
Lo

ad

A.Bocci, et al. Towards a heterogeneous computing farm for
the CMS High Level Trigger. [link]

• 300 ms/event ÷ ;.<
((,) x 33% = 53(27) ms/event

This estimating calculation just sets a scale of upper limit of HGCAL budget in HLT, where 300 ms is current total HLT budget, 7.5 is factor for increase of event rate,
4(2) is factor for optimistic(realistic) increase of # CPU threads., 33% is a conservative upper limit of HGCAL’s portion of HLT online time.

https://indico.cern.ch/event/708041/contributions/3276337/attachments/1810853/2957376/Towards_a_heterogeneous_computing_farm_for_the_CMS_High_Level_Trigger.pdf

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 4

Clustering in HGCAL

v Hits of a PU200 event in HGCAL. Color
and size represent hit energy.
Interaction point is on the left side.

v n~ O(100,000) hits

v HGCAL reconstruction starts by
reconstructing 2D clusters
layer-by-layer. k~O(10,000) clusters.

v Since cells are small compared to
shower lateral size, an "energy
density" is defined to better hint regional
energy blobs.

v 3D showers are reconstructed by
collecting and associating 2D layer
clusters

Features of HGCAL
clustering task
𝑛 > 𝑘 ≫ C

D
in 2D

Fast and GPU-friendly

v Build “Grid Spatial Index” for hits on each layer
• Grid tiles are small comparing with the size of HGCal layer
• Each tile in the grid hosts indices of hits inside it and has a fix length of memory to store the hosted indices.
• Points inside a tile can be directly accessed.

v Complexity of query d-neighborhood is O(1), given that d is small.
v Building spatial index is highly parallelizable on GPU.

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 5

Clustering by Energy (CLUE) on GPU

d-searchBox ΩF

d-neighborhood 𝑁F

𝑑

To query 𝑁F, we only need to loop of hits in ΩF

Querying neighborhood 𝑁F is one of the most frequent operations
in density-based clustering algorithms. So need fast 𝑁F query.

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 6

Clustering by Energy (CLUE) on GPU

v Step 0: Build Spatial Index
• 1 CUDA thread for each hit
• Register the index of each point to corresponding tile

v Step 1: Calculate Local density
• 1 CUDA thread for each hit
• Density defined on the left

v Step 2: Calculate Nearest Higher
• 1 CUDA thread for each hit
• Define 𝑑I ≡ max(𝜹𝒔, 𝜹𝒐), where 𝜹𝒔, 𝜹𝒐 are algorithm parameters

for seed promotion and outlier demotion
• Within 𝑁FI(𝑖), find the nearest points with higher density.
• Calculate 𝛿T = 𝑑𝑖𝑠𝑡(𝑖, 𝑛ℎT)

v Step 3: Promote Seeds and Demote Outliers
• 1 CUDA thread for each hit
• Promote hit as seed if 𝜌T > 𝝆𝒄, 𝛿T > 𝜹𝒔
• Demote hit as outlier if 𝜌T < 𝝆𝒄, 𝛿T > 𝜹𝒐

v Step 4: Assign Cluster ID
• 1 CUDA thread for each seed
• Push down the cluster ID from seeds through reversed chains of

nearest higherx

y

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 7

Clustering by Energy (CLUE) on GPU

v Step 0: Build Spatial Index
• 1 CUDA thread for each hit
• Register the index of each point to corresponding tile

v Step 1: Calculate Local Density
• 1 CUDA thread for each hit
• Density defined on the left

v Step 2: Calculate Nearest Higher
• 1 CUDA thread for each hit
• Define 𝑑I ≡ max(𝜹𝒔, 𝜹𝒐), where 𝜹𝒔, 𝜹𝒐 are algorithm parameters

for seed promotion and outlier demotion
• Within 𝑁FI(𝑖), find the nearest points with higher density.
• Calculate 𝛿T = 𝑑𝑖𝑠𝑡(𝑖, 𝑛ℎT)

v Step 3: Promote Seeds and Demote Outliers
• 1 CUDA thread for each hit
• Promote hit as seed if 𝜌T > 𝝆𝒄, 𝛿T > 𝜹𝒔
• Demote hit as outlier if 𝜌T < 𝝆𝒄, 𝛿T > 𝜹𝒐

v Step 4: Assign Cluster ID
• 1 CUDA thread for each seed
• Push down the cluster ID from seeds through reversed chains of

nearest higherx

y

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 8

Clustering by Energy (CLUE) on GPU

v Step 0: Build Spatial Index
• 1 CUDA thread for each hit
• Register the index of each point to corresponding tile

v Step 1: Calculate Local density
• 1 CUDA thread for each hit
• Density defined on the left

v Step 2: Calculate “Nearest Higher”
• 1 CUDA thread for each hit
• Define 𝒅𝒎 ≡ 𝐦𝐚𝐱(𝜹𝒔, 𝜹𝒐), where 𝜹𝒔, 𝜹𝒐 are algorithm

parameters for seed promotion and outlier demotion
• Within 𝑵𝒅𝒎(𝒊), find the nearest point with higher density.
• Calculate 𝜹𝒊 = 𝒅𝒊𝒔𝒕(𝒊, 𝒏𝒉𝒊)

v Step 3: Promote Seeds and Demote Outliers
• 1 CUDA thread for each hit
• Promote hit as seed if 𝜌T > 𝝆𝒄, 𝛿T > 𝜹𝒔
• Demote hit as outlier if 𝜌T < 𝝆𝒄, 𝛿T > 𝜹𝒐

v Step 4: Assign Cluster ID
• 1 CUDA thread for each seed
• Push down the cluster ID from seeds through reversed chains of

nearest higher

where

x

y

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 9

Clustering by Energy (CLUE) on GPU

𝜌T > 𝝆𝒄
𝛿T > 𝜹𝒔

𝜌T < 𝝆𝒄
𝛿T > 𝜹𝒐

𝜌T < 𝝆𝒄
𝛿T > 𝜹𝒐

𝜌T < 𝝆𝒄
𝛿T > 𝜹𝒐

𝜌T < 𝝆𝒄
𝛿T > 𝜹𝒐

v Step 0: Build Spatial Index
• 1 CUDA thread for each hit
• Register the index of each point to corresponding tile

v Step 1: Calculate Local density
• 1 CUDA thread for each hit
• Density defined on the left

v Step 2: Calculate Nearest Higher
• 1 CUDA thread for each hit
• Define 𝑑I ≡ max(𝜹𝒔, 𝜹𝒐), where 𝜹𝒔, 𝜹𝒐 are algorithm parameters

for seed promotion and outlier demotion
• Within 𝑁FI(𝑖), find the nearest points j with higher density.
• Calculate 𝛿T = 𝑑𝑖𝑠𝑡(𝑖, 𝑛ℎT)

v Step 3: Promote Seeds and Demote Outliers
• 1 CUDA thread for each hit
• Promote hit as seed if 𝝆𝒊 > 𝝆𝒄, 𝜹𝒊 > 𝜹𝒔
• Demote hit as outlier if 𝝆𝒊 < 𝝆𝒄, 𝜹𝒊 > 𝜹𝒐

v Step 4: Assign Cluster ID
• 1 CUDA thread for each seed
• Push down the cluster ID from seeds through reversed chains of

nearest higher

𝝆𝒄, 𝜹𝒔, 𝜹𝒐 are algorithm parameters

x

y

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 10

Clustering by Energy (CLUE) on GPU

v Step 0: Build Spatial Index
• 1 CUDA thread for each hit
• Register the index of each point to corresponding tile

v Step 1: Calculate Local density
• 1 CUDA thread for each hit
• Density defined on the left

v Step 2: Calculate Nearest Higher
• 1 CUDA thread for each hit
• Define 𝑑I ≡ max(𝜹𝒔, 𝜹𝒐), where 𝜹𝒔, 𝜹𝒐 are algorithm parameters

for seed promotion and outlier demotion
• Within 𝑁FI(𝑖), find the nearest points j with higher density.
• Calculate 𝛿T = 𝑑𝑖𝑠𝑡(𝑖, 𝑛ℎT)

v Step 3: Promote Seeds and Demote Outliers
• 1 CUDA thread for each hit
• Promote hit as seed if 𝜌T > 𝝆𝒄, 𝛿T > 𝜹𝒔
• Demote hit as outlier if 𝜌T < 𝝆𝒄, 𝛿T > 𝜹𝒐

v Step 4: Assign Cluster ID
• 1 CUDA thread for each seed
• Push the cluster ID from seeds to other hits through the

reversed chains of nearest higher.

Total number of points in HGCal
is about 10,000 more than this
plot

x

y

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 11

Clustering by Energy (CLUE) on GPU
v Test standalone CLUE implemented

with C++, CUDA and CUPLA.
v CUPLA is a wrapper of Alpaka to

conveniently port CUDA code to other
accelerator backends, such as Intel
Thread Building Block (TBB)

v In the test, each event has 100 layers.
On each layer, generate a total of n
random 2D points from C

.6
2D gaussian

distributions, each gaussian giving 10
points.

v AMD Ryzen 2700 + NVIDIA GTX
1080Ti.

v Total run time is O(n)
v TBB (16T) is ~4x faster than serial

CPU.
v CUDA is ~50x faster than serial CPU.
v Speed up factors depend on CPU and

GPU. Intel Xeon Silver + NVIDIA Tesla
V100 is in backup.

Average number
of points per layer
in PU200 events

CUDA
50x

faster

TBB
4x

faster

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 12

CLUE in CMS Software (CMSSW) Framework

make clusters on GPU

calibration copy to GPU

build data
structure density nearest

higher find seed
assign

clusters

post
processingcopy from GPUCPU

GPU

Previous clustering in
CMSSW framework [1]

CLUE in CMSSW framework
running on CPU and GPU

v CLUE has almost (>99%)
identical clustering result as
previous clustering algorithm in
CMSSW. (very rare cases
having difference are studied
and show little impact)

v The previous clustering used
KD-Tree for neighborhood query
and had an O(n2) loops and
O(nlog(n)) density sorting. [1]

[1] previous algorithm is described here but core/halo step is removed
http://hgcal.web.cern.ch/hgcal/Reconstruction/imagingAlgorithm/

y
[c

m
]

y
[c

m
]

http://hgcal.web.cern.ch/hgcal/Reconstruction/imagingAlgorithm/

v CLUE CPU has about 30X speed up over previous clustering in CMSSW.
v CLUE GPU V3 gives an additional 6X on top of CLUE CPU in CMSSW framework.
v GPU run time (32 ms) also includes memcpy between host and device (20 ms) and SoA conversion (6 ms). But they can be

shared by other GPU reconstruction steps and can be partially hidden if multiple CUDA stream work on different events. 30X
speed up over CPU if excluding memcpy and SoA conversion.

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 13

CLUE in CMS Software (CMSSW) Framework

Use grid-based Spatial Index instead of KD-Tree.
Remove O(n2) loop and density sorting

30x faster

6x 30x

v We introduce CLUE, an O(n) complexity and GPU-friendly clustering algorithm.

v CLUE is ideal for heavy clustering task in CMS HGCAL reconstruction during HL-LHC.

v Thanks to CMS’s plan of heterogeneous architecture in HLT and offline reconstruction, HGCal

clustering can run on GPU and can provide promising acceleration.

v In CMS Software (CMSSW) framework, CLUE CPU is 30x faster (203 ms) than previous CPU

clustering (6110 ms). CLUE on GPU gives another extra 6x speed up over CLUE on CPU (30x or 6

ms if excluding time of data traffic and SoA conversion).
• penalty due to data traffic and SoA conversion will be shared with other GPU reconstruction steps.

• these penalties can also be partially hidden if multiple CUDA streams works on different events.

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 14

Conclusion

Backup

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 16

CLUE Procedure

build data
structure density nearest

higher find seed assign
clusters

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 17

Clustering by Energy (CLUE) on GPU

Average number
of points per layer
in PU200 events

CUDA
80x

faster

TBB
2x

faster

10/31/19 GPU-based Clustering Algorithm for CMS High Granularity Calorimeter. CHEP 2019. Adelaide, Australia. (Z.Chen) 18

Energy Density in the CMS HGCAL Clustering

Definition of energy density

For CMS HGCAL, 𝑤f is energy of hit and 𝑑g = 13 mm, which equals to the distance between two
adjacent cells. The density kernel used in HGCAL is

𝜒 𝑑Tf = i
1 𝑖𝑓 𝑖 = 𝑗

0.5 𝑖𝑓 0 < 𝑑Tf < 𝑑g

Comparing with a single cell of maximum local energy, local energy density is more
sensitive to a multi-cell blob of energy.

Density kernel in HGCAL

