


Michal Simon

EOS Erasure Coding plug-in 

as a case study for the XRootD 

client declarative API

24/11/2019

Michal Simon



Michal Simon

Outline

• Motivation

• The EC use case

• Summary

24/11/2019



Michal Simon

Motivation

• Use case: erasure coding plug-in for EOS

• Executing multiple operations on multiple remote

files (stripes) in parallel

• Problem with asynchronous operation composability 

and code readability

• Asynchronous Open() + Write() + Close() in 

the code is only visible as an Open() (rest of the 

workflow is in the callbacks)

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

We would like to implement a ECWrite() method based on 

XRootD client API

• Write one block striped to n data chunks and m parity 

chunks

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

• We need to open all stripes, write to all stripes, set 

extended attributes on all stripes (e.g. checksum), 

close all stripes

• Ideally, for performance we would like to use only 

asynchronous APIs

• The write operation and setting extended attributes

should be done in parallel

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

Update of a single stripe/chunk with standard XrdCl API ...

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

… also all this boilerplate code is needed!

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

What do we have so far:

• We updated only one chunk

• Write and SetXAttr happen sequentially (we would 

need yet another handler-class to aggregate the result 

of parallel execution)

• The amount of boilerplait code is SIGNIFICANT!!!

• To update all data stripes and parity stripes we will need 

yet another handler-class to cope with parallel 

execution

• The boilerplait code is very repetitive!

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

We extracted the repeating patterns, applied significant 

amount of template meta-programming and got a new 

declarative API:

• Asynchronous operation composability

• Code readability

• Clear workflow

• In line with modern c++ (ranges v3 inspired, 

support for lambdas, std::futures)

• Released in 4.9.0 but more complete set of features 

available only in 5.0.0

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

Using declarative API:

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

Using declarative API:

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

Using declarative API:

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

Using declarative API:

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

Using declarative API:

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

Using declarative API:

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

Using declarative API:

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

Using declarative API:

24/11/2019



Michal Simon

Case study: Write erasure coded block of data

Using declarative API:

24/11/2019



Michal Simon

Summary

• Constraints: available only as a private API

• No template export available in gcc 4.8.5 (cc7), so 

making it public would effectively mean we won’t be 

able to change a thing

• Future work

• Once XRootD protocol supports request bundling

we will be able to translate pipelines to bundled 

requests (hopefully at compile-time) in order to save 

some RTTs

• Exposing it in Python bindings

• Documentation: http://xrootd.org/doc/xrdcl-

docs/www/xrdcldocs.html#x1-600005

24/11/2019

http://xrootd.org/doc/xrdcl-docs/www/xrdcldocs.html#x1-600005


Michal Simon

Questions?

12/06/2019


