
Winventory: microservices architecture case study
Sebastian Bukowiec, Pawel Tadeusz Gomulak (CERN, IT-CDA)

S. Bukowiec, P. Gomulak http://cern.ch/IT ©CERN CC-BY-SA 4.0

Event Bus (RabbitMQ)
Publish/Subscribe channel, asynchronous
communication across microservices

Applications microservice
Provides functionality about applications.
Besides MySQL the service uses Redis in-memory
database for caching

CERN SSO (OAuth2)
Authentication for the application

Identity microservice
Authenticates against CERN SSO, provides role based
authorization and generates JWT token

Databases
Each microservice has its own database
- Facilitates loose coupling
- No blocking by other service
- Independent development

Notifications microservice
Manages communication with the users including
templates and application grouping

Frontend
SPA based on Angular 7 with Angular Material
providing features like: lazy-loading, XSS protection,
http interceptors, dependency injection and routing

PowerShell worker
Feeds the systems with data from Computer
Management Framework (CMF)

Users microservice
Manages users and groups

Pools microservice
Manages pools sent to the user and gathers the
answers

Overview

Software inventory and communication tool, microservices architecture case study.

The Winventory system gathers user inputs to build a comprehensive inventory of
software assets across CERN. The system is built on a microservices architecture
pattern, which separates the application into multiple and independently
deployable units that can be individually developed, tested and deployed.

Purpose

- Identify systems approaching their end-of-life e.g. Windows Server 2008 R2.
Inform the users, gather information about the use cases and help to take
appropriate actions.

- Gather statistics about licensed software and facilitate communication with users
to understand various use cases and gives the overall license cost.

Data producer

Winventory currently has one data producer - Computer Management Framework
(CMF), a custom software installed on every Windows machine that is a member of
the CERN domain.

Data is collected once a day. Only data less than three months old is considered.
Missing data such as user and responsible are fetched from the network database.

Technology stack

Containerized deployment using Docker and OpenShift Container Platform.

Technology-agnostic system. Two different languages and frameworks: ASP .NET
Core services written in C# communicating easily with Flask and Celery services
written in Python.

Resilience and fault-tolerance in synchronous communication has been improved by
using an open source Polly circuit-breaker library.

The server-side code pushes content to connected web application clients
(frontend) as it happens, in real-time using open source library SignalR.

The object-relational mapping (ORM) is implemented using open source
frameworks Entity Framework for C# and SQLAlchemy for Python.

DevOps

The GitLab CI/CD pipeline is used to automatically build new Docker images
and deploy them to the OpenShift Container Platform after new code is pushed to
the Git repository.

To facilitate local development, a Docker Compose is used to build and run the
Winventory multi-container application locally on the developer’s computer.

