Optimizing Provisioning of LCG

Software Stacks with Kubernetes

2 Authors:] Heinz"3, R Bachmann23, G Ganis?, D Konstantinov, | Razumov*
TKarlsruhe University of Applied Sciences 2NTNU 3CERN “NRC Kurchatov Institute - IHEP

D<) Email: ep-sft-spi@cern.ch

The LCG software stacks

The LCG software stacks[1] contain almost 450 packages available for several compilers,
operating systems, Python versions and hardware architectures. Among these packages
are Monte Carlo generators, machine learning tools, Python modules and HEP specific
software. Some of its users are:

ATLAS

EXPERIMENT

Along with several releases per year, about 30 development builds are provided each
night to allow for quick updates and testing of new versions of ROOT, Geant4, etc. It also
provides the possibility to test new compilers and configurations.

The typical workflow of a LCG stack build pipeline contains the following steps:

’—> Configure |=%| Build |[=¥|Upload to EOS|=>|Deploy to CVMFS |=>»| Test —>@

This process is currently automated using a JenRins continous integration server and
virtual machines that function as build slaves for the Jenkins master. These machines are
taken from OpenStack, CERN's in-house cloud provider[2]. They run CERN CentOS 7 which
Is configured using Puppet to provide a Docker daemon for the build process as well as
Kerberos and CVMFS integration. The CVMFS file system and the Kerberos keytab are bind-
mounted into the Docker build containers.

Saving resources through container orchestration

The goal of moving from VMs to Kubernetes is to increase the efficiency of resource usage
and better respond to peaks of resource demand. This can be realized by the cluster auto-
scaling feature of Kubernetes that can automatically spawn and delete worker nodes as
needed. The current CPU usage is displayed in the plot below:

Average CPU workload per 24h on the build machines

100 %
° D CPU s idle

I cPuis working

80 %—

60 %—

40 %—

20 %—

Average CPU usage in percent

0%

_—

01:00 03:00 05:00 07:00 09:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00

Time of day

Kubernetes also serves as an additional abstraction layer that takes care of the under-
lying operating system, scheduling and cluster management. A user of Kubernetes only
needs to provide a suitable container image which is launched inside a pod. A pod is a
group of one or more co-scheduled containers with shared storage and network.

Vision for a new build infrastructure

-« Keep a Jenkins Cl server as a single point of entry to trigger build jobs, manage
configurations via variables and store all necessary secrets such as passwords.

« Use Kubernetes like a batch system similar to HTCondor to provide the necessary
resources on demand and scale down after the builds are done

Queued Jenkins jobs

Pod

Node
Pod Pod
Pod

Node

Node

Kubernetes

- Move environment definitions from the Docker host system inside the container images,
for example the Kerberos authentication.

- Follow Red Hat's single concern principle[3] to use specialized container images for
building, testing and deployment instead of general purpose images

State of the prototype

CERN Infrastructure
To realize the prototype we use the CERN cloud container service that relies on on
OpenStack Magnum|[2]. CVMFS read access is needed for most pods to make incremental
builds and tests possible. This feature is implemented by the CernVM-FS CSI driver[4].
Auto-scaling of the cluster works within the quota of the OpenStack project. If no free
node for a Jenkins job is available, a new one is

created in a matter of minutes.

-
[]
llllllllll

Configure &

| build pod Test pod

. \ \
Jenkins Ci 5 : :
- - : : * requires
- - - - CVMFS conveyor[5]
Y Y y y (not yet enabled)
N OO ~
Most effort of the prototype
went into the first pod shown CDash _ EOS CVMFS CDash
Report Filesystem Repository Report

above that focuses on the configurration and build of the software stack.

Jenkins integration

The integration into the Jenkins Cl landscape is the defining challenge of this prototype
because of the need to adapt to complex pre-existing workflows. This includes the
configuration of jobs, getting their log files and sending Kerberos tickets.

There are two different approaches to solve this problem:

Kubernetes plugin for Jenkins Kubernetes API (HTTP or kubectl)

Jenkins Integrates with existing Jenkins Requires mechanism for returning @
integration instance @ status and logs to Jenkins synchronously

Requires definition of
Ease of use @

Groovy pipeline Can be used from any shell environment @

Full control but increased internal
development workload

VLIl Dependence on external
workload project and developers

X86-64 0

Experience with the prototype

The software build inside the first pod, as well as reading from CVMFS, ARM @

sending a report to CDash and auto-scaling have been successfully tested. PowerPC @

Known limitations

Linux 0

* The Kubernetes cluster is not managed by IT directly. Therefore the

Windows @

responsibility for maintaining and monitoring the cluster falls to the

SPI project as an additional workload.

macOS Q

Shortcomings

- Deployment to CVMFS cannot be done easily within Kubernetes because it still relies on
an external pre-configured release manager VM.

- Streaming the log files from the pods to Jenkins turned out to be complex.

Future plans and outlook

» Further testing and evaluation of the Jenkins integration technologies

- Finalization of the CVMFS deployment pod by enabling and configuring the CVYMFS
conveyor technologyl[5].

* A reduction of the maintenance workload is expected from scheduled service
Improvements by CERN IT.

References

[1] Bulding, testing and distributing common software for the LHC
experiments, https://doi.org/10.1051/epjconf/201921405020
[2] CERN OpenStack service: https://cern.ch/clouddocs
[3] Bilgin Ibryam (Red Hat), 2017:
Principles of container-based application design
[4] CernVM-FS CSl driver: https://github.com/cernops/cvmfs-csi
[5] CernVM-FES conveyor: https://github.com/cvmfs/conveyor

Scan to download
this poster as PDF

