Grid Information Systems: Past, Present and Future
Markus Schulz, Laurence Field and Maria Alandes
20 Years Of Grid Computing

- CHEP 2000
 - Discussions on the emerging field of Grid computing
 - Two matching fundamental concepts:
 - The integration of distributed computing resources
 - The provision of authentication and authorization
 - Enabling access resources in different administrative domains
 - The Globus Tool Kit
 - Grid Resource Information Protocol (GRIP)
 - Grid Resource Registration Protocol (GRRP)
 - Grid Resource Access and Management (GRAM)
 - Grid File Transfer Protocol (GridFTP)
 - Grid Security Infrastructure (GSI)
Grid Information Systems

- Support coordinated resource-sharing and problem-solving
 - VOs need to obtain information about the **structure** and **state** of Grid services
 - which are widely distributed geographically.
- Information describing a Grid service is provided by the service itself
 - hence the Grid service is the primary information source
- The information provided conforms to an **information model**
 - More details later
- **Assumption that the information source is up-to-date**
 - that is the values represent the real state of the Grid service
- Queries may consider **thousands of information sources**
 - in order to enable efficient Grid functions that may utilize multiple cooperating services
- The goal is to efficiently execute:
 - **many queries**
 - from **many clients**
 - for **many information sources**
MDS and the BDII

- The **Metacomputing Directory Service (MDS)** from the Globus project
 - two information protocols (GRIP and GRRP) from the proposed Grid architecture
 - information providers and information indexing services,
 - separation between inquiry and discovery
- The MDS implementation adopted the standard **Lightweight Directory Access Protocol (LDAP)**
 - GRRP messages mapped onto LDAP add operations
 - GRIP where it is used to define the data model, query language and transport protocol

- **Not only is the LDAP data representation extensible and flexible, but LDAP is beginning to play a significant role in Web-based systems. Hence, we can expect wide deployment of LDAP information services, familiarity with LDAP data formats and programming, and the existence of LDAP directories with useful information.** – Aug 1997
 DOI: 10.1109/HPDC.1997.626445
 - Predictions are dangerous, especially when related to the future!
- The **Berkeley Database Information Index (BDII)**
 - Replaced GRRP with an information cache based on static registrations (Fake II)
 - To work around the stability issues with the initial deployment of MDS in DataGrid project
 - Became a standard component of the EDG Middleware in December 2002

First short term hack becomes a long term solution
Information Models

- Ensure agreement on the meaning of information
- They describe:
 - The real entities
 - The relationships between those entities
 - Their semantics
- A data model
 - Defines the syntax by which information is exchanged
- The MDS information model described
 - the physical and logical components of a compute resource
- The EDG described the Compute (CE) and Storage Elements (SE)
GLUE Information Model

• Grid Laboratory Uniform Environment
 • Defines a uniform representation of Grid resources
 • An information model
 • and LDAP data model

• A collaborative effort between:
 • DataTAG, US-iVDGL, Globus and EDG
 • Enabled transatlantic Grid interoperability

• GLUE 1.3
 • OSG/EGEE interoperability
 • Put the W in WLCG (thanks to Ruth!)
10 Years Of GLUE 2.0

- GLUE Working Group
 - in the Open Grid Forum
 - GFD.147 (2009-03-03)

- Describes Grid Services
 - As opposed to resources/protocols

- Official renderings in XML, JSON and LDIF
 - GFD.209 Reference Realization to XML Schema
 - GFD.219 Reference Realization to JSON Schema
 - GFD.218 Reference Realization to LDAP Schema

- 45 phone conferences
 - ~ 3 days talking
 - ~ 2 months FTE

- 40 versions of the document
 - 347 days
 - 46 pages, 12787 words
 - 254 Attributes
 - 28 Objects
Information Validation

- Information providers
 - Distributed data sources
- Conformance goes a long way
 - Checks before information is published

- Limitations on information and data models
 - Information missing or not existing?
 - Reflects the actual state of the system?
 - Assumption that the information source is up-to-date
 - Correctness (using [bytes] vs [Gbytes])
Architecture and Realisation

Users

- BDII service Provider
- site-level BDII
- resource BDII
- Provider

Monitoring

- top-level BDII

Services

- DIRAC

Visualizations

- VOs

- Users

- Monitoring

- Services

- Visualizations
Evolution Of The Grid

- **CHEP 2007**
 - Scalability and performance analysis of the EGEE information system
 - 251 sites which provided 1428 Services.
 - 2 million connections per day (lcg-bdii.cern.ch)
 - ~100MB in the Top BDII

- **Daily snapshots since March 2010**
 - Archived !!!

- **Sep 2019 (OSG stopped publishing in 2015)**
 - 209 sites providing 883 Services (GLUE 2.0)
 - 200 sites providing 909 Services (GLUE 1.3)
 - 1 million queries per day (lcg-bdii.cern.ch)
 - ~32MB in the Top BDII
Evolution Of The Grid

The Number Of Sites and Services Seen

Goodbye
ResourceBroker Nov 2010
CASTOR-SE Nov 2011
RGMA June 2012
GridIce Dec 2012
org.edg.gatekeeper Feb 2014
GUMS March 2015

Hello
ARC-CE (Nov 2011)
org.ogf.bes (Oct 2014)
HTCondorCE (March 2015)
Top Ten Queries

2007

<table>
<thead>
<tr>
<th>Q/h</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>6075</td>
<td>Close CE to an SE</td>
</tr>
<tr>
<td>5475</td>
<td>VO’s SA for an SE</td>
</tr>
<tr>
<td>5043</td>
<td>All SRMs</td>
</tr>
<tr>
<td>4791</td>
<td>An SE</td>
</tr>
<tr>
<td>2432</td>
<td>Close SE to a CE</td>
</tr>
<tr>
<td>2117</td>
<td>All Services for a VO</td>
</tr>
<tr>
<td>664</td>
<td>All CEs for a VO</td>
</tr>
<tr>
<td>638</td>
<td>All SAs for a VO</td>
</tr>
<tr>
<td>479</td>
<td>All SubClusters</td>
</tr>
<tr>
<td>448</td>
<td>GlueVOView for a CE</td>
</tr>
</tbody>
</table>

2019

<table>
<thead>
<tr>
<th>Q/h</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>5960</td>
<td>A specific Cluster</td>
</tr>
<tr>
<td>5923</td>
<td>All entries linked to a Cluster</td>
</tr>
<tr>
<td>5377</td>
<td>EEs of a Cluster</td>
</tr>
<tr>
<td>4898</td>
<td>GLUE2Shares for a VO</td>
</tr>
<tr>
<td>2928</td>
<td>A specific Site</td>
</tr>
<tr>
<td>909</td>
<td>SRM endpoint of a SE</td>
</tr>
<tr>
<td>305</td>
<td>Find all CEs for a VO</td>
</tr>
<tr>
<td>217</td>
<td>Find a specific CEs for a VO</td>
</tr>
<tr>
<td>193</td>
<td>A specific GLUE2 share</td>
</tr>
<tr>
<td>134</td>
<td>Cream CEs for a VO</td>
</tr>
</tbody>
</table>

Italics show GLUE2 queries
HTCondor CE Provider

• New provider required for HTCondorCE
 • Only publishes GLUE 2.0 information
 • Published initially minimal information
 • Responded to requests for additional information

• Included upstream
 • As part of the HTCondor CE distribution
 • Adoption by other sites

• Observations:
 • Compute Service information is required
 • GLUE 1.3 no longer needed
 • GLUE 2.0 is being used
Future

- The system is still used
 - The usage is decreasing
- There still seems to be a need
 - E.g. htcondor provider
- Options are the same as presented in 2011*
- Lazy:
 - Do nothing
- The Radical:
 - Decommission
- The Slow and Steady
 - Remove site-bdiis
 - Drop GLUE 1.3
 - Streamline GLUE 2.0 usage
- The Rocky
 - Separate the use cases
 - Centralized and reliable service discovery system
 - Provide a single system for experiment annotation and configuration

*https://indico.cern.ch/event/106645/
Summary

- 20 Years of Grid Computing
- 10 Years of GLUE 2.0
- Service Discovery and Status Still Relevant
 - ~900 services, ~200 sites
- Information providers are necessary!
 - To provide the status of services
 - Information models for complex services
 - Information models matter, representations don’t
- The Grid is shrinking
 - Peak ~2012 (in number of sites)
- The roads ahead are the same as 2011
 - Lazy, slow and steady, radical or rocky
- Validation, Validation and Validation
 - Provider, system-wide and cross-checks