
Exploiting CRIC to Streamline the
Configuration Management of

GlideinWMS Factories for CMS Support
J. Andreeva1, D. Box2, J. Dost3, A. Di Girolamo1, S. Haleem4, E. Kizinevič5, K. Majewski2,

J. Letts3, L. Lobato Pardavila2, B. Moreira Coimbra2, A. Pérez-Calero Yzquierdo6,7,
M. Mambelli2, M. Mascheroni3, P. Paparrigopoulos1, M. Zvada8,

and on behalf of the CMS Experiment at CERN

 1 2 3 4 5 6 7 8

The GlideinWMS pool ● GlideinWMS (GWMS) is the workload
management system used by CMS to
access Grid resources

● GWMS Frontend looks at the global pool,
and decides pressure for each Factory
entry (~site)

● GWMS Factory submits pilot jobs to
entries through condor-G

● An “entry” is a set of configuration
parameters (for a CE/cluster) that defines
a submission point in the Factory, i.e.
hostname, CE type (HTCondor, CREAM,
ARC, e.g.), number of CPUs, Memory, etc.

● A “Compute Element” (CE) is a Grid portal
to a computing cluster. 2

User
Jobs

GlideinWMS
Frontend

User Pool
(HTCondor)

Glidein Factory
& WMS Pool

WN WNWN

Grid Sites

Factory operations

3

● A dedicated Operations Team maintains the Factories:
○ The GlideinWMS Factories obtain leases on Grid resources when there

is demand for them.
● Ensure the system is optimally delivering useful resources to our users when

these are requested:
○ Minimize waste in the process of ensuring the above

● Configurations of all the entries maintained in a set of xml files:
○ Configuration files have been populated over several years with compute

elements. Requests through ticketing system.
● Factories might be shared with other experiments

○ The maintained factories have ~250 CMS entries out of ~400 in total.
○ CMS served by multiple redundant factories. High availability!

https://github.com/opensciencegrid/osg-gfactory

Example Entry Configuration
<entry name="CMSHTPC_T2_IT_Bari_recas_ce04" auth_method="grid_proxy" comment="Added entry 2018-10-11 --Edita" enabled="True"
gatekeeper="ce-04.recas.ba.infn.it:8443/cream-condor-mcore" gridtype="cream" rsl="WholeNodes = False; HostNumber = 1; CPUNumber = 8" trust_domain="grid" verbosity="std" work_dir=".">
 <config>
 <max_jobs>
 <default_per_frontend glideins="100" held="20" idle="20"/>
 <per_entry glideins="100" held="20" idle="20"/>
 <per_frontends>
 </per_frontends>
 </max_jobs>
 <release max_per_cycle="20" sleep="0.2"/>
 <remove max_per_cycle="5" sleep="0.2"/>
 <restrictions require_glidein_glexec_use="False" require_voms_proxy="False"/>
 <submit cluster_size="10" max_per_cycle="10" sleep="2" slots_layout="fixed">
 </submit>
 </config>
 <allow_frontends>
 </allow_frontends>
 <attrs>
 <attr name="GLEXEC_BIN" const="True" glidein_publish="False" job_publish="False" parameter="True" publish="True" type="string" value="NONE"/>
 <attr name="GLIDEIN_CMSSite" const="True" glidein_publish="True" job_publish="True" parameter="True" publish="True" type="string" value="T2_IT_Bari"/>
 <attr name="GLIDEIN_CPUS" const="True" glidein_publish="False" job_publish="True" parameter="True" publish="True" type="string" value="8"/>
 <attr name="GLIDEIN_Country" const="True" glidein_publish="True" job_publish="True" parameter="True" publish="True" type="string" value="IT"/>
 <attr name="GLIDEIN_MaxMemMBs" const="True" glidein_publish="False" job_publish="True" parameter="True" publish="True" type="int" value="20240"/>
 <attr name="GLIDEIN_Max_Walltime" const="True" glidein_publish="False" job_publish="False" parameter="True" publish="True" type="int" value="171000"/>
 <attr name="GLIDEIN_REQUIRED_OS" const="True" glidein_publish="True" job_publish="False" parameter="True" publish="True" type="string" value="any"/>
 <attr name="GLIDEIN_ResourceName" const="True" glidein_publish="True" job_publish="True" parameter="True" publish="True" type="string" value="INFN-BARI"/>
 <attr name="GLIDEIN_Retire_Time" const="True" glidein_publish="False" job_publish="False" parameter="True" publish="True" type="int" value="108000"/>
 <attr name="GLIDEIN_SEs" const="True" glidein_publish="True" job_publish="True" parameter="True" publish="True" type="string" value="storm-se-01.ba.infn.it"/>
 <attr name="GLIDEIN_Site" const="True" glidein_publish="True" job_publish="True" parameter="True" publish="True" type="string" value="Bari"/>
 <attr name="GLIDEIN_Supported_VOs" const="True" glidein_publish="False" job_publish="False" parameter="True" publish="True" type="string" value="CMS"/>
 <attrs>
</entry>

4

Entry Header

<entry name="CMSHTPC_T2_IT_Bari_recas_ce04"
auth_method="grid_proxy" comment="Added entry
2018-10-11 --Edita" enabled="True"
gatekeeper="ce-04.recas.ba.infn.it:8443/cream
-condor-mcore" gridtype="cream"
rsl="WholeNodes = False; HostNumber = 1;
CPUNumber = 8" trust_domain="grid"
verbosity="std" work_dir=".">

5

Configurations ...

6

Arritributes, Attributes, Attributes ...

7

Operations: Adding an Entry

● Everything done manually! Process can take a week per entry.
● Same procedures (and time) to make a change! Can we improve? 8

Is the
information
complete?

Yes

No

Factory operator
asks Admin for
clarifications

VO-specific
information &
requirements

No

Yes

Admin
opens ticket
with CE info

Done

Add Entry to
the Testbed

(ITB Factory)
Test (sleep)
jobs work?

Factory Operator
works with Admin

to fix errors

Different types of information
1. Grid-infrastructure (OSG, EGI) owned information systems

○ e.g.: CE hostname, CE type (Arc, HTCondor, etc), queue name, resource
name, supported VOs, etc.

○ Can be found in various information systems (e.g. OSG Topology, EGI gocdb)
2. Site-specific, but not published

○ e.g: working directory, maximum jobs, operating system, etc.
3. Internal Factory settings

○ e.g: Grid submission rates, entry names, etc.
4. VO pilot configuration

○ e.g.: CPU/Memory configuration

Idea: Automate how we get #1 and #2

9

https://topology.opensciencegrid.org/rgsummary/xml
https://goc.egi.eu/portal/

The Computing Resource Information Cache (CRIC)
In 2015 the OSG announced plans to stop using BDII to publish their computing
resources. This triggered a review of information systems in WLCG.

CMS began to evaluate adopting CRIC in 2016 as an information service.

It is a community project, based on a refactorization of AGIS, the ATLAS Grid
Information System.

Part of a trend in CMS (and HEP at large) to leverage community software
projects. Other examples in CMS include GlidienWMS, HTCondor, Rucio, MonIT.

10

CRIC
Gather and allow access to information about physical and CMS logical computing
resources:

● Core CRIC with info from gocdb/oim, for example (CE’s and their queues)
● CMS CRIC with experiment-specific info on how we use resources
● CMS is using these CE’s through the computing units (Sites)
● Each compute unit has multiple compute resources (GlideinWMS entries)

API’s available to retrieve this information.

Leverage CRIC to automate Factory configuration generation.

11

http://cms-cric.cern.ch/core/
http://cms-cric.cern.ch

Generating configs from CRIC

● Since the environment is complex, we want to design a system that gives Factory
operations some flexibility to take into account all use cases:
○ Get the relevant info from CRIC,
○ but then generate xml configurations in the Factory itself.

● Gives Factory ops some extra control:
○ In case we need to overwrite some values, or add specific ones
○ Allows use of plug-in modules to take care of non-WLCG use cases

● Developed scripts that saves those info from both CMS and core CRIC:
○ Information saved in a set of yaml files

■ Different files for different types of information (e.g.: Grid-owned info vs.
site-specific)

○ Another script merges this information and produces the final xml
configuration. 12

Advantages of this approach
● Central and public place where all the site

configurations are available (through web)
● Streamline Factory operation workflow: less

back and forth with sites
● Free up some load on Factory operations

○ Info can be inserted by site admins when
not available in information systems

○ Easier to fill in a web form than edit a big
XML file

● Starting point for more automation
○ e.g. automatically send test jobs once an

entry is created in CRIC
13

Operations: Adding an Entry

● Less back and forth with sites
● Eventually can automate submission of test jobs once entry is in CRIC. 14

No

Yes

Admin opens
ticket with CE

info. The
CRIC form is

filled

Done

Automatically
add Entry to
the Testbed

(ITB Factory)

Test (sleep)
jobs work?

Factory Operator
works with Admin

to fix errors

CORE and
CMS CRIC
Information

Current situation
● A form to add an entry is available in CRIC.

○ Many thanks to the CRIC development team who listened to our
feedback!

● Prototype has been extensively tested.
● Successfully used it to add 20 entries in production factories:

○ Tested on sites with a complicated topology and many different entries
like Nebraska and UCSD.

15

Next Step: Addressing more use cases
Extending the CMS-centric solution to a more complex environment

● Factory team serves many other VOs: ICECube, LIGO, nanoHUB, Glow…
○ Different Frontends with different credentials sending pilot requests

● They have different types of sites: OSG, WLCG, EGI
● And different technologies (CE’s): HTCondorCE, CREAM, NorduGrid, Arc …
● And all the different permutations:

○ e.g. OSG only sites that serves LIGO, OSG/WLCG site serving multiple
experiments, etc.

○ For CMS we focus on WLCG sites (EGI, OSG, and others)

Factory operators need a common interface to configure entries regardless of who owns the
resources. We are in close contact with the CRIC team and will evaluate possible solutions.

16

Conclusions
● Factory operations historically done by managing a set of big xml files.
● Worked on a new solution that allows CMS Factory operators to leverage the

CRIC interface to insert and manage entries:
○ With all the advantages of a web-based solution, compared to

manipulating xml files.
● Solution already validated in a production environment.
● Evaluating how to address a wider variety of use cases in addition to CMS VO

and WLCG Sites.

17

Abstract
GlideinWMS is a workload management and provisioning system that allows sharing computing
resources distributed over independent sites. Based on the requests made by GlideinWMS
Frontends, a dynamically sized pool of resources is created by GlideinWMS pilot Factories via pilot
job submission to resource sites' computing elements. More than 400 computing elements (CE)
are currently serving more than 10 virtual organizations through GlideinWMS, with CMS being the
biggest user with 230 CEs. The complex configurations of the parameters defining resource
requests, as submitted to those CEs, have been historically managed by manually editing a set of
different xml files. New possibilities arise with CMS adopting the Computing Resource Information
Catalogue (CRIC), an information system that collects, aggregates, stores, and exposes, among
other things, computing resource data coming from various data providers. The talk will describe
the challenges faced when CMS started to use CRIC to automatically generate the GlideinWMS
Factory configurations. The architecture of the prototype, and the ancillary tools developed to ease
this transition, will be discussed. Finally, future plans and milestones will be outlined.

18

Acknowledgements

This work was partially supported by the U.S. Department of Energy, the National
Science Foundation, and by Spain’s Ministry of Economy and Competitiveness
grant FPA2016-80994.

CMS thanks our partners in the GlideinWMS, HTCondor, and CRIC development
teams, the OSG, and our colleagues at CERN, all of whom make the shared
computing infrastructure a success.

19

