# Implementation of ATLAS Distributed Computing monitoring dashboards using InfluxDB and Grafana

<u>Thomas Beermann</u>, Aleksandr Alekseev, Dario Barberis, Sabine Crépé-Renaudin, Johannes Elmsheuser, Ivan Glushkov, Michal Svatos, Armen Vartapetian, Petr Vokac, Helmut Wolters

### CHEP 2019, Adelaide



### **Overview**

- The monitoring and accounting infrastructure used by ATLAS during Run-1 and Run-2 was based on custom applications developed ~10 years ago by CERN IT and ATLAS members
  - After all these years the old dashboards showed some aging effects:
    - Data retrieval was slow due to huge amounts of data stored in Oracle databases
    - The main developers left and with them in-depth maintenance knowledge
    - It was difficult to add more features
  - The dashboards worked well enough for the old requirements but were in need of an overhaul
- In 2016 the CERN IT monitoring group started to build a new Unified Monitoring Architecture based on modern open source components
  - The new ATLAS jobs accounting and DDM dashboards presented in here have been developed on top of this infrastructure

### **CERN MonIT infrastructure**

- Provides Monitoring as a Service for the CERN Data Centre, IT Services and the WLCG collaborations
- Collect, transport, store and process metrics and logs for applications and infrastructure

Sources > Transport > (Processing) > Storage > Access



### **Data Sources for ADC Dashboards**

- Transfer Monitoring (from ATLAS DDM system Rucio):
  - Rucio produces events for each successful or failed file transfers between sites and for file deletions
  - Pilots and Rucio clients produce traces for grid file accesses or user downloads
  - Both the events and traces are sent to a central ActiveMQ instance
  - $\circ$   $\quad$  Collected from there by Monit to inject into the Kafka pipeline
- DDM / Storage Accounting (Rucio):
  - Daily Oracle procedures running on the Rucio database to create a dump of the data registered in Rucio per storage / project / datatype / etc.
  - Aggregated data is sent again to ActiveMQ and forwarded to Kafka
- Jobs Accounting (from ATLAS WFMS PanDA):
  - Collector from Monit runs every 10 minutes to fetch submitted, pending, running, finalising and completed jobs directly from the PanDA database
  - Directly injected into Kafka

### Processing

- All the processing / aggregations are done using the streaming platform Kafka together with Spark for the stream-processing
- Transfer monitoring:
  - Events and Traces are unified to a common format and then enriched with topology information (Country, Cloud, Tier, etc.) from the ATLAS Grid Information System (AGIS)
  - Then the data is aggregated in 1 minute bins grouped by activity, destination/source, protocol, etc.
- DDM / Storage accounting
  - Processing is only used to enrich the data with same topology info as for transfers
- Job accounting:
  - Again topology information added from AGIS
  - Then data is aggregated in hourly bins
  - Bins are continuously updated as data is flowing in

### **Backends**

### • InfluxDB

- Used to keep the time series data for the transfer monitoring and jobs accounting
- Kept for 30 days in original binning
- Then auto down-sampling to larger bins (1h / 1d / 7d / 30d) for up to 5 years

### Elasticsearch

- Used to store transfer details and the storage accounting data
- Data retention of 30 days
- HDFS
  - Used for long term storage of all the data
  - Data stored in compressed JSON
  - Data kept forever
  - Can be used in batch and data-intensive analytics workflows

### **Dashboards**

- All dashboards are available in a central Grafana instance
- The dashboards are split in three different categories:
  - Production: Stable / official dashboards that are used by experts / shifters. Can only be edited by admins.
  - Development: Copies of Production dashboards to test new features as well as completely new dashboards that are still in testing. Can be edited by users having the editor role.
  - Playground: Open to anybody having access to Grafana. Can be used to build your own specific dashboards that might not be interesting to other people, e.g. specific site view.

### **Transfer Dashboard**

- The transfer dashboard provides a lot of useful information for Shifters, Experts and Management
- Possible to drill down from a global view to single file transfers / deletions
- Main entrypoint is the transfer efficiency matrix to quickly spot problems
- Histograms for transfer / deletion volume, successes, failures, throughput
- Error messages are classified and grouped to identify common problems

|      | Efficiency |      |     |     |     |     |     |     |      |     |     |     |
|------|------------|------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|
|      | CA         | CERN | DE  | ES  | FR  | п   | ND  | NL  | RU   | тw  | UK  | US  |
| CA   | 92%        | 97%  | 97% | 65% | 94% | 93% | 89% | 91% | 82%  | 72% | 95% | 84% |
| CERN | 86%        | 96%  | 97% | 96% | 97% | 96% | 96% | 93% | 90%  | 85% | 96% | 87% |
| DE   | 76%        | 98%  | 91% | 79% | 87% | 89% | 96% | 85% | 82%  | 94% | 93% | 88% |
| ES   | 96%        | 98%  | 94% | 99% | 97% | 93% | 97% | 89% | 84%  | 99% | 98% | 90% |
| FR   | 95%        | 95%  | 98% | 97% | 96% | 96% | 96% | 88% | 92%  | 91% | 95% | 90% |
| IT   | 81%        | 93%  | 92% | 85% | 85% | 97% | 97% | 86% | 95%  | 97% | 96% | 83% |
| ND   | 89%        | 93%  | 95% | 87% | 74% | 97% | 98% | 89% | 92%  | 99% | 98% | 90% |
| NL   | 93%        | 43%  | 98% | 98% | 97% | 97% | 97% | 97% | 99%  | 99% | 95% | 90% |
| RU   | 85%        | 99%  | 99% | 98% | 95% | 99% | 98% | 83% | 100% | 99% | 98% | 93% |
| TW   | 84%        | 100% | 98% | 98% | 98% | 95% | 98% | 71% | 100% |     | 97% | 94% |
| UK   | 44%        | 74%  | 63% | 28% | 33% | 30% | 29% | 19% | 81%  | 77% | 71% | 74% |
| US   | 52%        | 88%  | 70% | 53% | 54% | 62% | 73% | 77% | 63%  | 88% | 76% | 80% |





|     | Destination cloud | Source cloud | efficiency  | volume    | successes | failures - |
|-----|-------------------|--------------|-------------|-----------|-----------|------------|
| IL. |                   | CERN         | 42.54       | 91.29 TB  | 44863     | 60592      |
| JS  |                   | US           | 79.67       | 138.07 TB | 98650     | 25178      |
| ΙК  |                   | FR           | 32.72       | 22.95 TB  | 9775      | 20102      |
| JS  |                   | FR           | 54.46       | 40.12 TB  | 22606     | 18906      |
| JS  |                   | CA           | 51.66       | 35.55 TB  | 17157     | 16056      |
| ІК  |                   | US           | 74.26       | 72.24 TB  | 41505     | 14384      |
| JS  |                   | ик           | 75.80       | 55.64 TB  | 37410     | 11943      |
| JS  |                   | DE           | 70.29       | 53.26 TB  | 26176     | 11063      |
| ΙК  |                   | DE           | 62.91       | 27.63 TB  | 14570     | 8589       |
| JS  |                   | ES           | 52.61       | 11.82 TB  | 9325      | 8401       |
| JK  |                   | NL           | 18.75       | 1.03 TB   | 1609      | 6972       |
| JS  |                   | IT           | 61.93       | 11.85 TB  | 10099     | 6207       |
| ІК  |                   | ES           | 28.13       | 2.33 TB   | 2300      | 5875       |
|     |                   | 1            | 2 3 4 5 6 7 | 8 9       |           |            |

DDM transfers

### **Site Accounting**

- Useful to show current occupation of sites / storage endpoints
- A lot of different groupings available to identify the data type stored at site:
  - datatype, physics\_stream, prod\_step, etc.
- Data can be filtered by tier, country, cloud, site, token, etc.
- Additionally, storage provided numbers are added to spot possible inconsistencies and to show free space a site

|                                | @ Last 24 hours |           |              |               |
|--------------------------------|-----------------|-----------|--------------|---------------|
| Endpoint 🗢                     | Files           | Bytes     | Storage used | Storage total |
| BEIJING-LCG2_DATADISK          | 712936          | 275.98 TB | 278.32 TB    | 310.00 TB     |
| BEIJING-LCG2_LOCALGROUPDISK    | 140386          | 8.77 TB   | 8.77 TB      | 18.00 TB      |
| BEIJING-LCG2_SCRATCHDISK       | 232592          | 44.19 TB  | 44.23 TB     | 60.00 TB      |
| FR-ALPES_DATADISK_DATALAKES    | 251082          | 26.78 TB  | 28.42 TB     | 60.01 TB      |
| FR-ALPES_SCRATCHDISK_DATALAKES | 56082           | 101.69 GB | 129.83 GB    | 28.73 TB      |
| GRIF-IRFU_DATADISK             | 3714862         | 1.49 PB   | 1.47 PB      | 1.72 PB       |
| GRIF-IRFU_LOCALGROUPDISK       | 597888          | 370.36 TB | 370.82 TB    | 395.82 TB     |
| GRIF-IRFU_SCRATCHDISK          | 741428          | 74.37 TB  | 75.43 TB     | 101.16 TB     |
| GRIF-LAL_DATADISK              | 2897600         | 901.38 TB | 900.67 TB    | 1.00 PB       |
| GRIF-LAL_LOCALGROUPDISK        | 318304          | 14.43 TB  | 16.29 TB     | 26.39 TB      |
|                                | 007000          | 90 PO TD  | 22 07 10     | 47 00 Ch      |









#### 2019-11-05

### **Jobs Accounting**

- Useful overview to find potential problems with the WFMS and jobs on the grid
- Plots available for transient and permanent job states
- Accounting of number of job slots, wall clock time, HS06, etc.
- Plots can be grouped / filtered by a lot of different parameters like site / job type / processing type / queue







### Conclusion

- ATLAS Distributed Computing has a coherent set of monitoring and accounting dashboards
- Removing the custom, in-house developed tools and using instead widely available open-source technologies brings a lot of benefits:
  - Better scalability
  - Better maintainability
  - Easier development of new features
- But there are also some minor disadvantages like the reduced number of visualization options in Grafana
- Overall, we are well set for LHC Run-3

## **Questions?**